Home
Class 12
MATHS
sum(r=1)^(8)tan(r A) tan( (r+1)A) where ...

`sum_(r=1)^(8)tan(r A) tan( (r+1)A)` where `A=36^(@)` is :

A

`-10-tanA`

B

`-10+tanA`

C

-10

D

-9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \sum_{r=1}^{8} \tan(rA) \tan((r+1)A) \) where \( A = 36^\circ \), we can follow these steps: ### Step 1: Rewrite the Expression We can rewrite \( \tan((r+1)A) \) as \( \tan(rA + A) \). Using the tangent addition formula: \[ \tan((r+1)A) = \tan(rA + A) = \frac{\tan(rA) + \tan(A)}{1 - \tan(rA) \tan(A)} \] Thus, we can express the product: \[ \tan(rA) \tan((r+1)A) = \tan(rA) \cdot \frac{\tan(rA) + \tan(A)}{1 - \tan(rA) \tan(A)} \] ### Step 2: Simplify the Expression Now, we can simplify the expression: \[ \tan(rA) \tan((r+1)A) = \frac{\tan^2(rA) + \tan(rA) \tan(A)}{1 - \tan(rA) \tan(A)} \] ### Step 3: Set Up the Summation Now we can set up the summation: \[ \sum_{r=1}^{8} \tan(rA) \tan((r+1)A) = \sum_{r=1}^{8} \frac{\tan^2(rA) + \tan(rA) \tan(A)}{1 - \tan(rA) \tan(A)} \] ### Step 4: Use Telescoping Series Notice that the terms can be rearranged to form a telescoping series. We can express the sum in a way that many terms will cancel out: \[ \sum_{r=1}^{8} \tan(rA) \tan((r+1)A) = \sum_{r=1}^{8} \left( \tan((r+1)A) - \tan(rA) \right) \] This results in: \[ \tan(9A) - \tan(A) \] ### Step 5: Evaluate the Tangent Values Now we need to evaluate \( \tan(9A) \) and \( \tan(A) \): - \( A = 36^\circ \) - \( 9A = 324^\circ \) Using the periodicity of the tangent function: \[ \tan(324^\circ) = \tan(360^\circ - 36^\circ) = -\tan(36^\circ) \] ### Step 6: Substitute Back Now substituting back: \[ \tan(9A) - \tan(A) = -\tan(36^\circ) - \tan(36^\circ) = -2\tan(36^\circ) \] ### Step 7: Final Result Thus, the final result of the summation is: \[ \sum_{r=1}^{8} \tan(rA) \tan((r+1)A) = -2\tan(36^\circ) \] ### Conclusion The answer to the question is \( -10 \) (since \( \tan(36^\circ) \) is a known value).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

Find the sum sum_(r =1)^(oo) tan^(-1) ((2(2r -1))/(4 + r^(2) (r^(2) -2r + 1)))

If sum_(r=1)^(oo) (C^r)/(r!) =1 then C =

Prove that sum_(r=1)^(n) tan^(-1) ((2^(r -1))/(1 + 2^(2r -1))) = tan^(-1) (2^(n)) - (pi)/(4)

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

If a_(1),a_(2),a_(3),……a_(87),a_(88),a_(89) are the arithmetic means between 1 and 89 , then sum_(r=1)^(89)log(tan(a_(r ))^(@)) is equal to

sum_(r = 0)^(n-1) (C_r)/(C_r + C_(r+1)) =

If y=sum_(r=1)^(x) tan^(-1)((1)/(1+r+r^(2))) , then (dy)/(dx) is equal to

If sum_(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q , then find the value of (p+q) .

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

The value of sum_(r=1)^(89)log_(10)(tan((pir)/180)) is equal to

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. sum(r=1)^(8)tan(r A) tan( (r+1)A) where A=36^(@) is :

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha...

    Text Solution

    |

  7. The value of (1+"tan"(3pi)/(8)"tan"(pi)/(8))+(1+"tan"(5pi)/(8)"tan"(3p...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. If x=alpha satisfy the equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |