Home
Class 12
MATHS
alphacos^2 3theta+betacos^4theta=16cos^6...

`alphacos^2 3theta+betacos^4theta=16cos^6theta+9cos^2theta`. Find `alpha & beta` if its a identity

A

`a=1, b=24`

B

`a=3, b=24`

C

`a=4, b=2`

D

`a=7, b=18`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \alpha \cos^2 3\theta + \beta \cos^4 \theta = 16 \cos^6 \theta + 9 \cos^2 \theta \) and find the values of \( \alpha \) and \( \beta \) such that it holds as an identity, we can follow these steps: ### Step 1: Substitute Values for \(\theta\) 1. **Let \(\theta = 0\)**: - Calculate \( \cos 0 = 1 \). - Substitute into the equation: \[ \alpha \cos^2(0) + \beta \cos^4(0) = 16 \cos^6(0) + 9 \cos^2(0) \] - This simplifies to: \[ \alpha(1) + \beta(1) = 16(1) + 9(1) \] \[ \alpha + \beta = 25 \quad \text{(Equation 1)} \] ### Step 2: Substitute Another Value for \(\theta\) 2. **Let \(\theta = \pi\)**: - Calculate \( \cos \pi = -1 \). - Substitute into the equation: \[ \alpha \cos^2(3\pi) + \beta \cos^4(\pi) = 16 \cos^6(\pi) + 9 \cos^2(\pi) \] - This simplifies to: \[ \alpha(1) + \beta(1) = 16(1) + 9(1) \] \[ \alpha + \beta = 25 \quad \text{(Equation 2)} \] ### Step 3: Substitute a Third Value for \(\theta\) 3. **Let \(\theta = \frac{\pi}{3}\)**: - Calculate \( \cos \frac{\pi}{3} = \frac{1}{2} \). - Substitute into the equation: \[ \alpha \cos^2(3 \cdot \frac{\pi}{3}) + \beta \cos^4(\frac{\pi}{3}) = 16 \cos^6(\frac{\pi}{3}) + 9 \cos^2(\frac{\pi}{3}) \] - This simplifies to: \[ \alpha \cos^2(\pi) + \beta \left(\frac{1}{2}\right)^4 = 16 \left(\frac{1}{2}\right)^6 + 9 \left(\frac{1}{2}\right)^2 \] - Which becomes: \[ \alpha(1) + \beta \left(\frac{1}{16}\right) = 16 \left(\frac{1}{64}\right) + 9 \left(\frac{1}{4}\right) \] - Simplifying further: \[ \alpha + \frac{\beta}{16} = \frac{16}{64} + \frac{9}{4} \] \[ \alpha + \frac{\beta}{16} = \frac{1}{4} + \frac{9}{4} = \frac{10}{4} = \frac{5}{2} \quad \text{(Equation 3)} \] ### Step 4: Solve the Equations Now we have the following equations: 1. \( \alpha + \beta = 25 \) (Equation 1) 2. \( \alpha + \frac{\beta}{16} = \frac{5}{2} \) (Equation 3) From Equation 1, we can express \( \alpha \) in terms of \( \beta \): \[ \alpha = 25 - \beta \] Substituting into Equation 3: \[ 25 - \beta + \frac{\beta}{16} = \frac{5}{2} \] Multiplying through by 16 to eliminate the fraction: \[ 16(25 - \beta) + \beta = 40 \] \[ 400 - 16\beta + \beta = 40 \] \[ 400 - 15\beta = 40 \] \[ 15\beta = 400 - 40 \] \[ 15\beta = 360 \] \[ \beta = 24 \] ### Step 5: Find \(\alpha\) Substituting \( \beta = 24 \) back into Equation 1: \[ \alpha + 24 = 25 \] \[ \alpha = 1 \] ### Final Answer Thus, the values of \( \alpha \) and \( \beta \) are: \[ \alpha = 1, \quad \beta = 24 \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

If a cos^ 3 3theta + b cos^4 theta = 16 cos^6 theta + 9 cos^2 theta is an identity then-

Solve cos theta+cos 2theta+cos 3theta=0 .

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

Prove that : cos^3 2theta+3cos2theta=4(cos^6theta-sin^6 theta)

The value for 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta) +1 is

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

Prove that : cos^2 theta + sin^2 theta cos 2 beta = cos^2 beta + sin^2 beta cos 2theta

Prove (cos 3theta+ 2 cos 5theta+ cos 7theta)/( cos theta+ 2 cos 3theta+ cos 5theta)= cos 2theta- sin 2theta tan 3theta .

Prove that cos 4theta–cos 4alpha = 8(cos theta-cos alpha)(cos theta+ cos alpha )(cos theta -sin alpha)(cos theta+sin alpha)

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. alphacos^2 3theta+betacos^4theta=16cos^6theta+9cos^2theta. Find alpha ...

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha...

    Text Solution

    |

  7. The value of (1+"tan"(3pi)/(8)"tan"(pi)/(8))+(1+"tan"(5pi)/(8)"tan"(3p...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. If x=alpha satisfy the equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |