Home
Class 12
MATHS
If sin x+sin^2=1, then cos^8 x+2 cos^6...

If `sin x+sin^2=1`, then `cos^8 x+2 cos^6 x+cos^4 x=`

A

2

B

1

C

3

D

`(1)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin^2 x = 1 \) and find the value of \( \cos^8 x + 2 \cos^6 x + \cos^4 x \), we can follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ \sin x + \sin^2 x = 1 \] We can rearrange this to isolate \( \sin^2 x \): \[ \sin^2 x + \sin x - 1 = 0 \] ### Step 2: Solving the Quadratic Equation This is a quadratic equation in terms of \( \sin x \). We can use the quadratic formula \( \sin x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 1, b = 1, c = -1 \): \[ \sin x = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ \sin x = \frac{-1 \pm \sqrt{1 + 4}}{2} \] \[ \sin x = \frac{-1 \pm \sqrt{5}}{2} \] ### Step 3: Finding Valid Solutions Since \( \sin x \) must be between -1 and 1, we need to check the two possible solutions: 1. \( \sin x = \frac{-1 + \sqrt{5}}{2} \) (valid) 2. \( \sin x = \frac{-1 - \sqrt{5}}{2} \) (not valid as it is less than -1) Thus, we have: \[ \sin x = \frac{-1 + \sqrt{5}}{2} \] ### Step 4: Finding \( \cos^2 x \) Using the Pythagorean identity \( \sin^2 x + \cos^2 x = 1 \): \[ \cos^2 x = 1 - \sin^2 x \] Calculating \( \sin^2 x \): \[ \sin^2 x = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{1 - 2\sqrt{5} + 5}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] Thus, \[ \cos^2 x = 1 - \frac{3 - \sqrt{5}}{2} = \frac{2 - (3 - \sqrt{5})}{2} = \frac{-1 + \sqrt{5}}{2} \] ### Step 5: Finding \( \cos^4 x \) Now, we calculate \( \cos^4 x \): \[ \cos^4 x = \left(\cos^2 x\right)^2 = \left(\frac{-1 + \sqrt{5}}{2}\right)^2 = \frac{(-1 + \sqrt{5})^2}{4} = \frac{6 - 2\sqrt{5}}{4} = \frac{3 - \sqrt{5}}{2} \] ### Step 6: Finding \( \cos^6 x \) and \( \cos^8 x \) Next, we find \( \cos^6 x \) and \( \cos^8 x \): \[ \cos^6 x = \cos^4 x \cdot \cos^2 x = \left(\frac{3 - \sqrt{5}}{2}\right) \cdot \left(\frac{-1 + \sqrt{5}}{2}\right) \] Calculating this gives: \[ \cos^6 x = \frac{(3 - \sqrt{5})(-1 + \sqrt{5})}{4} = \frac{-3 + 3\sqrt{5} + \sqrt{5} - 5}{4} = \frac{-8 + 4\sqrt{5}}{4} = -2 + \sqrt{5} \] Now for \( \cos^8 x \): \[ \cos^8 x = \cos^4 x \cdot \cos^4 x = \left(\frac{3 - \sqrt{5}}{2}\right)^2 = \frac{(3 - \sqrt{5})^2}{4} = \frac{9 - 6\sqrt{5} + 5}{4} = \frac{14 - 6\sqrt{5}}{4} = \frac{7 - 3\sqrt{5}}{2} \] ### Step 7: Putting It All Together Now we can substitute back into the expression: \[ \cos^8 x + 2 \cos^6 x + \cos^4 x = \frac{7 - 3\sqrt{5}}{2} + 2(-2 + \sqrt{5}) + \frac{3 - \sqrt{5}}{2} \] Calculating this gives: \[ = \frac{7 - 3\sqrt{5}}{2} + \frac{-4 + 2\sqrt{5}}{1} + \frac{3 - \sqrt{5}}{2} \] Combining like terms leads to: \[ = \frac{7 - 3\sqrt{5} - 8 + 4\sqrt{5} + 3 - \sqrt{5}}{2} = \frac{2}{2} = 1 \] ### Final Answer Thus, the final answer is: \[ \cos^8 x + 2 \cos^6 x + \cos^4 x = 1 \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

if sin x +sin^2 x = 1 then cos^12 x+ 3 cos^10 x + 3 cos^8 x + cos ^6 x =

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

Solve sin x-3 sin 2x + sin 3x = cos x -3 cos 2x + cos 3x .

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

Show that : 2 (sin^6 x + cos^6 x) -3 (sin^4 x + cos^4 x) + 1 =0 .

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If sin x+sin^2=1, then cos^8 x+2 cos^6 x+cos^4 x=

    Text Solution

    |

  2. Let P=(sin80^(@)sin65^(@) sin35^(@))/(sin20^(@)+sin50^(@)+sin110^(@))...

    Text Solution

    |

  3. The value of expression (1-cot23^(@))(1-cot22^(@)) is equal to :

    Text Solution

    |

  4. If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 th...

    Text Solution

    |

  5. A(1)A(2)A(3)………A(18) is a regular 18 sided polygon. B is an external p...

    Text Solution

    |

  6. If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha...

    Text Solution

    |

  7. The value of (1+"tan"(3pi)/(8)"tan"(pi)/(8))+(1+"tan"(5pi)/(8)"tan"(3p...

    Text Solution

    |

  8. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  9. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  10. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  11. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  12. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  13. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  14. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  15. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  16. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  17. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  18. If x=alpha satisfy the equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(...

    Text Solution

    |

  19. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  20. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  21. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |