Home
Class 12
MATHS
If cosx + cosy + cosz = 0 and sinx + sin...

If `cosx + cosy + cosz = 0` and `sinx + siny + sinz =0`, then show that
`cos (x-y) + cos(y - z) + cos(z - x) = - 3/2.`

A

`cos x cos ycosz=1`

B

`cos x+cosy+cos z=0`

C

`sinx+siny+sinz=1`

D

`cos 3x+cos3y+cos3z=12 cosx cosy cosz`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if \( \cos x + \cos y + \cos z = 0 \) and \( \sin x + \sin y + \sin z = 0 \), then \( \cos(x-y) + \cos(y-z) + \cos(z-x) = -\frac{3}{2} \). ### Step-by-Step Solution: 1. **Start with Given Equations**: \[ \cos x + \cos y + \cos z = 0 \quad \text{(1)} \] \[ \sin x + \sin y + \sin z = 0 \quad \text{(2)} \] 2. **Rearranging the Equations**: From equation (1), we can express \( \cos z \): \[ \cos z = -(\cos x + \cos y) \quad \text{(3)} \] From equation (2), we can express \( \sin z \): \[ \sin z = -(\sin x + \sin y) \quad \text{(4)} \] 3. **Square and Add the Equations**: We square both sides of equations (3) and (4) and add them: \[ \cos^2 z + \sin^2 z = \cos^2 x + \cos^2 y + \sin^2 x + \sin^2 y + 2(\cos x \cos y + \sin x \sin y) \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ 1 = (\cos^2 x + \sin^2 x) + (\cos^2 y + \sin^2 y) + 2(\cos x \cos y + \sin x \sin y) \] \[ 1 = 1 + 1 + 2(\cos x \cos y + \sin x \sin y) \] 4. **Simplifying the Equation**: Thus, we have: \[ 1 = 2 + 2(\cos x \cos y + \sin x \sin y) \] Rearranging gives: \[ 2(\cos x \cos y + \sin x \sin y) = -1 \] \[ \cos x \cos y + \sin x \sin y = -\frac{1}{2} \] 5. **Using the Cosine of Angle Difference**: Recall the cosine of the difference of angles: \[ \cos(x-y) = \cos x \cos y + \sin x \sin y \] Therefore: \[ \cos(x-y) = -\frac{1}{2} \quad \text{(5)} \] 6. **Applying the Same Logic for Other Angles**: By symmetry, we can apply the same reasoning to find: \[ \cos(y-z) = -\frac{1}{2} \quad \text{(6)} \] \[ \cos(z-x) = -\frac{1}{2} \quad \text{(7)} \] 7. **Adding the Results**: Now, we add equations (5), (6), and (7): \[ \cos(x-y) + \cos(y-z) + \cos(z-x) = -\frac{1}{2} - \frac{1}{2} - \frac{1}{2} = -\frac{3}{2} \] 8. **Conclusion**: Thus, we have shown that: \[ \cos(x-y) + \cos(y-z) + \cos(z-x) = -\frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|12 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

lf cos x + cosy-cos z = 0 = sin x + sin y + sin z then cos((x-y)/2)=

If cosx+cosy+cosalpha=0 and sinx + siny + sinalpha=0 , then cot((x+y)/2)=

If 2(cos(x-y)+cos(y-z)+cos(z-x))=-3 , then :

If cosx+cosy+cosalpha=0 and sinx+siny+sinalpha=0 then cot((x+y)/2)=

If 3cosx + 2cos3x=cosy , 3sinx + 2sin3x =siny , then cos2x equals

If tan x, tan y, tan z are in G.P., show that cos 2y = (cos (x +z))/(cos (x-z)).

If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x^(2) + y^(2) + z^(2) = r^(2)

If cosx+cosy+cosz=sinx+siny+sinz=0" then "cos(x-y)=

If cosx+cosy+cosz=sinx+siny+sinz=0" then "cos(x-y)= (a) 0 (b) -1/2 (c) 2 (d) 1

If x+y+z= pi/2 , prove that : cos(x-y-z) + cos(y-z-x) + cos (z-x-y)-4cosx cosy cosz=0

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-2 : One or More than One Answer is/are Correct
  1. If 3 sin beta= sin( 2alpha+beta), then

    Text Solution

    |

  2. If sin(x+20^0)=2sinxcos40^0,w h r ex in (0,pi/2), then which of the fo...

    Text Solution

    |

  3. If cosx + cosy + cosz = 0 and sinx + siny + sinz =0, then show that ...

    Text Solution

    |

  4. If 0 lt x lt pi/2 and sin^(n) x + cos^(n) x ge 1, then

    Text Solution

    |

  5. If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-de...

    Text Solution

    |

  6. If X=x cos theta-y sin theta, Y=x sin theta+y cos theta and X^(2)+4XY...

    Text Solution

    |

  7. If 2a=2tan10^(@)+tan50^(@), 2b=tan20^(@)+tan50^(@) 2c=2tan10^(@)+tan...

    Text Solution

    |

  8. Which of the following real numbers when simplified are neither termi...

    Text Solution

    |

  9. If alpha=sin x cos^(3) x and beta=cos x sin^(3) x, then :

    Text Solution

    |

  10. If (pi)/(2) lt theta lt pi, then possible answers of sqrt(2+sqrt(2+2c...

    Text Solution

    |

  11. If cot^(3)alpha+cot^(2)alpha+cot alpha=1 then which of the following...

    Text Solution

    |

  12. The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(...

    Text Solution

    |

  13. If alpha gt (1)/(sin^(6)x+cos^(6)x) AA x in R, then alpha can be

    Text Solution

    |

  14. If x in (0, (pi)/(2)) and sinx=(3)/(sqrt(10)), Let k=log(10)sinx+log...

    Text Solution

    |

  15. If A, B, C are angles of a triangle ABC and tanAtanC=3, tan B tanC=6 t...

    Text Solution

    |

  16. The value of (sin x-cos x)/(sin^(3)x) is equal to :

    Text Solution

    |

  17. If f(x)=sin^(2)x+sin^(2)(x+(2pi)/(3))+sin^(2)(x+(4pi)/(3)) then :

    Text Solution

    |

  18. The range of y=(sin4x-sin2x)/(sin4x+sin2x) satisfies

    Text Solution

    |

  19. If sqrt(2)cos A=cos B+cos^3B ,a n dsqrt(2)sinA=sinB-sin^3Bt h e nsin(A...

    Text Solution

    |

  20. If alpha gt (1)/(sin^(6)x+cos^(6)x) AA x in R, then alpha can be

    Text Solution

    |