Home
Class 12
MATHS
Consider the function f(x)=(sqrt(1+cos x...

Consider the function `f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x))` then
Q. If `x in (pi, 2pi)` then f(x) is

A

`cot((pi)/(2)+(x)/(2))`

B

`tan((pi)/(4)+(x)/(2))`

C

`cot((pi)/(4)-(x)/(2))`

D

`tan(( pi)/(4)-(x)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the function \( f(x) = \frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}} \) for \( x \in (\pi, 2\pi) \), we can follow these steps: ### Step 1: Simplify the expression using trigonometric identities We know that: \[ \cos x = 1 - 2\sin^2\left(\frac{x}{2}\right) \] and \[ 1 - \cos x = 2\sin^2\left(\frac{x}{2}\right) \] Thus, we can rewrite \( \sqrt{1 + \cos x} \) and \( \sqrt{1 - \cos x} \): \[ \sqrt{1 + \cos x} = \sqrt{1 + (1 - 2\sin^2\left(\frac{x}{2}\right))} = \sqrt{2 - 2\sin^2\left(\frac{x}{2}\right)} = \sqrt{2}\cos\left(\frac{x}{2}\right) \] \[ \sqrt{1 - \cos x} = \sqrt{2\sin^2\left(\frac{x}{2}\right)} = \sqrt{2}\sin\left(\frac{x}{2}\right) \] ### Step 2: Substitute back into the function Now substituting these back into \( f(x) \): \[ f(x) = \frac{\sqrt{2}\cos\left(\frac{x}{2}\right) + \sqrt{2}\sin\left(\frac{x}{2}\right)}{\sqrt{2}\cos\left(\frac{x}{2}\right) - \sqrt{2}\sin\left(\frac{x}{2}\right)} \] This simplifies to: \[ f(x) = \frac{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)} \] ### Step 3: Factor out \(\sqrt{2}\) Factoring out \(\sqrt{2}\) from both the numerator and denominator gives: \[ f(x) = \frac{\cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)} \] ### Step 4: Analyze the function in the interval \( x \in (\pi, 2\pi) \) In the interval \( x \in (\pi, 2\pi) \), we have \( \frac{x}{2} \in \left(\frac{\pi}{2}, \pi\right) \). In this range: - \( \cos\left(\frac{x}{2}\right) \) is negative. - \( \sin\left(\frac{x}{2}\right) \) is positive. Thus, we can write: \[ f(x) = \frac{\text{negative} + \text{positive}}{\text{negative} - \text{positive}} \] ### Step 5: Further simplify This gives us: \[ f(x) = \frac{\text{some positive value}}{\text{some negative value}} < 0 \] Thus, \( f(x) \) is negative in the interval \( x \in (\pi, 2\pi) \). ### Conclusion Therefore, the function \( f(x) \) is negative for \( x \in (\pi, 2\pi) \).
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

If the function f(x)=(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx)) If the value of f(pi/3)=a+bsqrt(c) then a+b+c=

The function f(x)=sqrt(1-sqrt(1-x^2))

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

Prove that: tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2,\ if\ pi < x <\3pi/2

If piltxlt2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(x/2+pi/4)dot