Home
Class 12
MATHS
If the function f(x)=(sqrt(1+cosx)+sqrt(...

If the function `f(x)=(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))` If the value of `f(pi/3)=a+bsqrt(c)` then `a+b+c=`

A

4

B

5

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the function \( f(x) = \frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}} \) and find \( f\left(\frac{\pi}{3}\right) \), we can follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{3} \) First, we need to calculate \( \cos\left(\frac{\pi}{3}\right) \): \[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \] Now substitute this value into the function: \[ f\left(\frac{\pi}{3}\right) = \frac{\sqrt{1 + \frac{1}{2}} + \sqrt{1 - \frac{1}{2}}}{\sqrt{1 + \frac{1}{2}} - \sqrt{1 - \frac{1}{2}}} \] ### Step 2: Simplify the square roots Calculate \( \sqrt{1 + \frac{1}{2}} \) and \( \sqrt{1 - \frac{1}{2}} \): \[ \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}} = \frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{2} \] \[ \sqrt{1 - \frac{1}{2}} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] ### Step 3: Substitute back into the function Now substitute these values back into the function: \[ f\left(\frac{\pi}{3}\right) = \frac{\frac{\sqrt{6}}{2} + \frac{\sqrt{2}}{2}}{\frac{\sqrt{6}}{2} - \frac{\sqrt{2}}{2}} \] ### Step 4: Factor out \( \frac{1}{2} \) Factor out \( \frac{1}{2} \) from both the numerator and denominator: \[ f\left(\frac{\pi}{3}\right) = \frac{\frac{1}{2}(\sqrt{6} + \sqrt{2})}{\frac{1}{2}(\sqrt{6} - \sqrt{2})} = \frac{\sqrt{6} + \sqrt{2}}{\sqrt{6} - \sqrt{2}} \] ### Step 5: Rationalize the denominator Multiply the numerator and denominator by the conjugate of the denominator: \[ f\left(\frac{\pi}{3}\right) = \frac{(\sqrt{6} + \sqrt{2})(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} \] ### Step 6: Calculate the numerator and denominator Calculate the numerator: \[ (\sqrt{6} + \sqrt{2})^2 = 6 + 2 + 2\sqrt{12} = 8 + 4\sqrt{3} \] Calculate the denominator: \[ (\sqrt{6})^2 - (\sqrt{2})^2 = 6 - 2 = 4 \] ### Step 7: Final expression Now we have: \[ f\left(\frac{\pi}{3}\right) = \frac{8 + 4\sqrt{3}}{4} = 2 + \sqrt{3} \] ### Step 8: Identify \( a \), \( b \), and \( c \) From the expression \( f\left(\frac{\pi}{3}\right) = 2 + 1\sqrt{3} \), we identify: - \( a = 2 \) - \( b = 1 \) - \( c = 3 \) ### Step 9: Calculate \( a + b + c \) Now calculate: \[ a + b + c = 2 + 1 + 3 = 6 \] Thus, the final answer is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-2 : One or More than One Answer is/are Correct|26 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

intcosx/sqrt(1+cosx)dx

Consider the function f(x)=(sqrt(1+cos x)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cos x)) then Q. If x in (pi, 2pi) then f(x) is

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

If (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(a+x/2) and x in (pi,2pi) then 'a' is equal to :

Prove that: tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2,\ if\ pi < x <\3pi/2

The domain of the function f(x)=(1)/(sqrt(|cosx|+cosx)) is

If pi < x < 2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))="cot(x/2+pi/4)dot

If piltxlt2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))=cot(x/2+pi/4)dot

Draw the graph of y=f(x)=sqrt(1-cosx)