Home
Class 12
MATHS
If alpha=pi/7 then find the value of (1/...

If `alpha=pi/7` then find the value of `(1/cosalpha+(2cosalpha)/(cos2alpha))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \frac{1}{\cos \alpha} + \frac{2 \cos \alpha}{\cos 2\alpha} \] where \(\alpha = \frac{\pi}{7}\). ### Step 1: Write the expression with a common denominator We can combine the two fractions by finding a common denominator, which is \(\cos \alpha \cdot \cos 2\alpha\): \[ \frac{1}{\cos \alpha} + \frac{2 \cos \alpha}{\cos 2\alpha} = \frac{\cos 2\alpha + 2 \cos^2 \alpha}{\cos \alpha \cdot \cos 2\alpha} \] ### Step 2: Use the double angle identity We know that: \[ \cos 2\alpha = 2 \cos^2 \alpha - 1 \] Substituting this into our expression gives: \[ \cos 2\alpha + 2 \cos^2 \alpha = (2 \cos^2 \alpha - 1) + 2 \cos^2 \alpha = 4 \cos^2 \alpha - 1 \] ### Step 3: Substitute back into the expression Now we can substitute this back into our combined fraction: \[ \frac{4 \cos^2 \alpha - 1}{\cos \alpha \cdot \cos 2\alpha} \] ### Step 4: Multiply numerator and denominator by \(2 \sin \alpha\) To simplify further, we can multiply both the numerator and denominator by \(2 \sin \alpha\): \[ \frac{2 \sin \alpha (4 \cos^2 \alpha - 1)}{2 \sin \alpha \cdot \cos \alpha \cdot \cos 2\alpha} \] ### Step 5: Recognize the sine double angle identity The numerator can be simplified using the identity \(2 \sin \alpha \cos \alpha = \sin 2\alpha\): \[ \frac{2 \sin \alpha (4 \cos^2 \alpha - 1)}{\sin 2\alpha \cdot \cos 2\alpha} \] ### Step 6: Use the sine addition formula Using the identity \(2 \sin A \cos B = \sin(A + B) - \sin(A - B)\): \[ \frac{4 \sin 3\alpha}{\sin 4\alpha} \] ### Step 7: Substitute \(\alpha = \frac{\pi}{7}\) Now, substituting \(\alpha = \frac{\pi}{7}\): \[ \frac{4 \sin \left(3 \cdot \frac{\pi}{7}\right)}{\sin \left(4 \cdot \frac{\pi}{7}\right)} \] ### Step 8: Simplify using sine properties We know that: \[ \sin \left( \pi - x \right) = \sin x \] Thus: \[ \sin \left( 4 \cdot \frac{\pi}{7} \right) = \sin \left( \pi - \frac{3\pi}{7} \right) = \sin \left( \frac{3\pi}{7} \right) \] ### Step 9: Final simplification This leads to: \[ \frac{4 \sin \left( \frac{3\pi}{7} \right)}{\sin \left( \frac{3\pi}{7} \right)} = 4 \] ### Conclusion Thus, the value of the expression is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).

If cosalpha, cosbeta and cosgamma are the direction cosine of a line, then find the value of cos^2alpha+(cosbeta+singamma)(cosbeta-singamma) .

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dx

If alpha=cos ((2pi)/5)+isin((2pi)/5) , then find the value of alpha+alpha^2+alpha^3+alpha^4

Integrate the functions (cos2x-cos2alpha)/(cosx-cosalpha)

Evaluate: int(cos2x-cos2alpha)/(cosx-cosalpha)\ dxdot

If 0 lt alpha lt pi/2 then show that tanalpha+cotalphagtsinalpha+cosalpha

If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to

Givent that pi/2 lt alphaltpi then the expression sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha)) (A) 1/(cosalpha) (B) - 2/(cosalpha) (C) 2/(cosalpha) (D) does not exist

If pi lt alpha lt (3pi)/2 then find the value of expression sqrt(4 sin^4 alpha+ sin^2 2alpha)+ 4 cos^2(pi/4- alpha/2)

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If 10sin^(4)alpha+15cos^(4)alpha=6 and the value of 9"cosec"^(4)alpha...

    Text Solution

    |

  2. The value of (1+"tan"(3pi)/(8)"tan"(pi)/(8))+(1+"tan"(5pi)/(8)"tan"(3p...

    Text Solution

    |

  3. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  4. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  5. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  6. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  7. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  8. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  9. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  10. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  11. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  12. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  13. If x=alpha satisfy the equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(...

    Text Solution

    |

  14. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  15. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  16. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  17. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90^(@)), then ...

    Text Solution

    |

  18. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  19. Let alpha be the smallest integral value of x, x gt 0 such that tan19...

    Text Solution

    |

  20. Find the value of the expression (sin20^(@)(4 cos20^(@)+1))/(cos20^(@)...

    Text Solution

    |