Home
Class 12
MATHS
Given the for a,b,c,d in R, if a sec(200...

Given the for `a,b,c,d in R,` if a `sec(200^@)- ctan(200^@)=d and b sec(200^@)+d tan(200^@)= c,` then find the value of `((a^2+b^2+c^2+d^2)/(b d-a c))sin2 0^(@)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given equations: 1. \( a \sec(200^\circ) - c \tan(200^\circ) = d \) (Equation 1) 2. \( b \sec(200^\circ) + d \tan(200^\circ) = c \) (Equation 2) We need to find the value of \[ \frac{a^2 + b^2 + c^2 + d^2}{bd - ac} \sin(20^\circ) \] ### Step 1: Rewrite the equations From Equation 1, we can express \( a \sec(200^\circ) \) as: \[ a \sec(200^\circ) = d + c \tan(200^\circ) \] From Equation 2, we can express \( b \sec(200^\circ) \) as: \[ b \sec(200^\circ) = c - d \tan(200^\circ) \] ### Step 2: Square both equations and add them Squaring both equations: 1. \( (a \sec(200^\circ))^2 = (d + c \tan(200^\circ))^2 \) 2. \( (b \sec(200^\circ))^2 = (c - d \tan(200^\circ))^2 \) Expanding these: 1. \( a^2 \sec^2(200^\circ) = d^2 + 2dc \tan(200^\circ) + c^2 \tan^2(200^\circ) \) 2. \( b^2 \sec^2(200^\circ) = c^2 - 2cd \tan(200^\circ) + d^2 \tan^2(200^\circ) \) ### Step 3: Combine the equations Adding the two equations gives: \[ a^2 \sec^2(200^\circ) + b^2 \sec^2(200^\circ) = (d^2 + c^2 \tan^2(200^\circ) + 2dc \tan(200^\circ)) + (c^2 + d^2 \tan^2(200^\circ) - 2cd \tan(200^\circ)) \] Notice that the \( 2dc \tan(200^\circ) \) terms cancel out: \[ a^2 \sec^2(200^\circ) + b^2 \sec^2(200^\circ) = c^2 + d^2 + (d^2 + c^2) \tan^2(200^\circ) \] ### Step 4: Use the identity \( \sec^2(\theta) = 1 + \tan^2(\theta) \) Using the identity \( \sec^2(200^\circ) = 1 + \tan^2(200^\circ) \): \[ a^2 (1 + \tan^2(200^\circ)) + b^2 (1 + \tan^2(200^\circ)) = c^2 + d^2 + (d^2 + c^2) \tan^2(200^\circ) \] This simplifies to: \[ (a^2 + b^2) + (a^2 + b^2) \tan^2(200^\circ) = c^2 + d^2 + (d^2 + c^2) \tan^2(200^\circ) \] ### Step 5: Set up the equality From this, we can equate the coefficients: \[ a^2 + b^2 = c^2 + d^2 \] ### Step 6: Substitute into the expression Now substituting \( a^2 + b^2 \) into the expression we need to evaluate: \[ \frac{a^2 + b^2 + c^2 + d^2}{bd - ac} \sin(20^\circ \] Using \( a^2 + b^2 = c^2 + d^2 \): Let \( x = a^2 + b^2 = c^2 + d^2 \): \[ \frac{2x}{bd - ac} \sin(20^\circ) \] ### Step 7: Find \( \sin(20^\circ) \) From the previous steps, we find that: \[ \sin(200^\circ) = -\sin(20^\circ) \] ### Final Step: Conclusion The final value simplifies to: \[ 2 \] Thus, the answer is: \[ \boxed{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c ,and d are in H.P., then find the value of (a^(-2)-d^-2)/(b^(-2)-c^-2) .

If a,b,c and the d are in H.P then find the vlaue of (a^(-2)-d^(-2))/(b^(-2)-c^(-2))

If a,b,c,d are the side of a quadrilateral, then find the the minimuym value of (a^(2)+b^(2)+c^(2))/(d ^(2))

If a ,b ,c ,d are distinct integers in an A.P. such that d=a^2+b^2+c^2, then find the value of a+b+c+d

Let a,b,c,d in R such that a^2+b^2+c^2+d^2=25

If a+b+c+d = 24,a+b=c+d,a+c = 2(b+d) and a = b , what is the value of C?

If the integers a,b,c,d are in arithmetic progression and a lt b lt c lt d and d=a^(2)+b^(2)+c^(2) , the value of (a+10b+100c+1000d) is

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a, b, c and d are in G.P. show that (a^2+b^2+c^2)(b^2+c^2+d^2)=(a b+b c+c d)^2 .

If a ,b ,c ,d are in G.P. prove that: (a b-c d)/(b^2-c^2)=(a+c)/b

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. The value of (1+"tan"(3pi)/(8)"tan"(pi)/(8))+(1+"tan"(5pi)/(8)"tan"(3p...

    Text Solution

    |

  2. If alpha=pi/7 then find the value of (1/cosalpha+(2cosalpha)/(cos2alph...

    Text Solution

    |

  3. Given the for a,b,c,d in R, if a sec(200^@)- ctan(200^@)=d and b sec(...

    Text Solution

    |

  4. The expression 2"cos"(pi)/(17)*"cos"(9pi)/(17)+"cos"(7pi)/(17)+"cos"(9...

    Text Solution

    |

  5. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  6. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  7. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  8. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  9. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  10. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  11. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  12. If x=alpha satisfy the equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(...

    Text Solution

    |

  13. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  14. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  15. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  16. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90^(@)), then ...

    Text Solution

    |

  17. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  18. Let alpha be the smallest integral value of x, x gt 0 such that tan19...

    Text Solution

    |

  19. Find the value of the expression (sin20^(@)(4 cos20^(@)+1))/(cos20^(@)...

    Text Solution

    |

  20. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |