Home
Class 12
MATHS
If sin^(3)theta+sin^(3)(theta+(2pi)/(3)...

If `sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a sinb theta`. Find the value of `|(b)/(a)|`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) = a \sin b \theta \), we will use the identity for \( \sin^3 \theta \) and properties of sine functions. ### Step-by-Step Solution: 1. **Use the identity for \( \sin^3 \theta \)**: \[ \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \] Therefore, we can rewrite each term: \[ \sin^3 \theta = \frac{3 \sin \theta - \sin 3\theta}{4} \] \[ \sin^3 \left( \theta + \frac{2\pi}{3} \right) = \frac{3 \sin \left( \theta + \frac{2\pi}{3} \right) - \sin \left( 3\theta + 2\pi \right)}{4} \] \[ \sin^3 \left( \theta + \frac{4\pi}{3} \right) = \frac{3 \sin \left( \theta + \frac{4\pi}{3} \right) - \sin \left( 3\theta + 4\pi \right)}{4} \] 2. **Substituting the identities into the equation**: \[ \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) = \frac{1}{4} \left( 3 \sin \theta - \sin 3\theta + 3 \sin \left( \theta + \frac{2\pi}{3} \right) - \sin \left( 3\theta + 2\pi \right) + 3 \sin \left( \theta + \frac{4\pi}{3} \right) - \sin \left( 3\theta + 4\pi \right) \right) \] 3. **Simplifying the sine terms**: Since \( \sin(3\theta + 2\pi) = \sin(3\theta) \) and \( \sin(3\theta + 4\pi) = \sin(3\theta) \), we can simplify: \[ = \frac{1}{4} \left( 3 \sin \theta + 3 \sin \left( \theta + \frac{2\pi}{3} \right) + 3 \sin \left( \theta + \frac{4\pi}{3} \right) - 2 \sin 3\theta \right) \] 4. **Using the sine addition formulas**: The sum \( \sin \left( \theta + \frac{2\pi}{3} \right) + \sin \left( \theta + \frac{4\pi}{3} \right) \) can be simplified: \[ \sin \left( \theta + \frac{2\pi}{3} \right) + \sin \left( \theta + \frac{4\pi}{3} \right) = \sin \theta \left( \cos \frac{2\pi}{3} + \cos \frac{4\pi}{3} \right) + \cos \theta \left( \sin \frac{2\pi}{3} + \sin \frac{4\pi}{3} \right) \] Noting that \( \cos \frac{2\pi}{3} = -\frac{1}{2} \) and \( \cos \frac{4\pi}{3} = -\frac{1}{2} \) gives: \[ = -\sin \theta + 0 = -\sin \theta \] 5. **Final simplification**: Thus, we have: \[ \sin^3 \theta + \sin^3 \left( \theta + \frac{2\pi}{3} \right) + \sin^3 \left( \theta + \frac{4\pi}{3} \right) = \frac{1}{4} \left( 3 \sin \theta - 2 \sin 3\theta \right) \] This can be rewritten as: \[ = \frac{3}{4} \sin \theta - \frac{1}{2} \sin 3\theta \] 6. **Setting equal to \( a \sin b \theta \)**: We can express this as: \[ = -\frac{3}{4} \sin 3\theta \] Thus, comparing with \( a \sin b \theta \): \[ a = -\frac{3}{4}, \quad b = 3 \] 7. **Finding \( \left| \frac{b}{a} \right| \)**: \[ \left| \frac{b}{a} \right| = \left| \frac{3}{-\frac{3}{4}} \right| = \left| -4 \right| = 4 \] ### Final Answer: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

If f( theta ) = sin ^(3)theta + sin ^(3)( theta + (2pi)/(3)) + sin ^(3)( theta + (4pi)/(3)) then the value of f((pi)/(18)) + f((7pi)/(18)) is ___________.

sin^(3)theta + sin theta - sin theta cos^(2)theta =

The volume of the parallelepiped whose coterminous edges are represented by the vectors 2vecb xx vecc, 3vecc xx veca and 4veca xx vecb where veca=(1+sintheta)hati+costhetahatj+sin2thetahatk , vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk , vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk is 18 cubic units, then the values of theta , in the interval (0,pi/2) , is/are

The volume of the parallelepiped whose coterminous edges are represented by the vectors 2vecb xx vecc, 3vecc xx veca and 4veca xx vecb where vecb=sin(theta+(2pi)/(3))hati+cos(theta+(2pi)/(3))hatj+sin(2theta+(4pi)/(3))hatk , vecc=sin(theta-(2pi)/(3))hati+cos(theta-(2pi)/(3))hatj + sin(2theta-(4pi)/(3))hatk is 18 cubic units, then the values of theta , in the interval (0,pi/2) , is/are

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If alpha and beta are roots of equation 3/4"sin"((theta)/9)=sin^(3)theta+3sin^(3)((theta)/3)+9sin^(3)((theta)/9)+1/(4sqrt(2)) for 0lt theta lt (pi)/2 , then tanalpha+tanbeta is equal to

If x sin^3 theta+ y cos^3 theta = sin theta cos theta and x sin theta = y cos theta, Find the value of x^2 + y^2.

Show that 4 sin ((pi)/(3) - theta ) sin ((pi)/(3) + theta) =3-4 sin ^(2) theta

Prove that 4sinthetasin(pi/3+theta)sin((2pi)/3+theta)=sin3theta

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If the expression (sin theta sin2theta+sin3theta sin60theta+sin4theta...

    Text Solution

    |

  2. Let a=sin10^(@), b =sin50^(@), c=sin70^(@)," then " 8abc((a+b)/(c ))((...

    Text Solution

    |

  3. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  4. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  5. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  6. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  7. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  8. If x=alpha satisfy the equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(...

    Text Solution

    |

  9. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  10. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  11. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  12. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90^(@)), then ...

    Text Solution

    |

  13. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  14. Let alpha be the smallest integral value of x, x gt 0 such that tan19...

    Text Solution

    |

  15. Find the value of the expression (sin20^(@)(4 cos20^(@)+1))/(cos20^(@)...

    Text Solution

    |

  16. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  17. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  18. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |

  19. If tan alpha and tan beta are the roots of equation x^(2)-12x-3=0, the...

    Text Solution

    |

  20. The value of (cos24^(@))/(2tan33^(@)sin^(2)57^(@))+(sin162^(@))/(sin1...

    Text Solution

    |