Home
Class 12
MATHS
If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(...

If `tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@)`, then `lambda/4` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 20^\circ + \tan 40^\circ + \tan 80^\circ - \tan 60^\circ = \lambda \sin 40^\circ \), we can follow these steps: ### Step 1: Use the formula for tangent sums We know the identity: \[ \tan A + \tan B + \tan C = \tan 3A \] for \( A + B + C = 60^\circ \). In our case, we can set: - \( A = 20^\circ \) - \( B = 40^\circ \) - \( C = 60^\circ - 20^\circ - 40^\circ = 0^\circ \) This means: \[ \tan 20^\circ + \tan 40^\circ + \tan 0^\circ = \tan 60^\circ \] Since \( \tan 0^\circ = 0 \), we have: \[ \tan 20^\circ + \tan 40^\circ = \tan 60^\circ \] ### Step 2: Substitute \( \tan 60^\circ \) We know that \( \tan 60^\circ = \sqrt{3} \). Thus: \[ \tan 20^\circ + \tan 40^\circ = \sqrt{3} \] ### Step 3: Add \( \tan 80^\circ \) Now, we need to add \( \tan 80^\circ \) to both sides: \[ \tan 20^\circ + \tan 40^\circ + \tan 80^\circ = \sqrt{3} + \tan 80^\circ \] ### Step 4: Use the tangent identity We can use the identity \( \tan(90^\circ - x) = \cot x \) to find \( \tan 80^\circ \): \[ \tan 80^\circ = \cot 10^\circ \] Thus, we can express \( \tan 80^\circ \) in terms of \( \tan 10^\circ \): \[ \tan 80^\circ = \frac{1}{\tan 10^\circ} \] ### Step 5: Substitute back into the equation Substituting back, we have: \[ \tan 20^\circ + \tan 40^\circ + \frac{1}{\tan 10^\circ} - \sqrt{3} = \lambda \sin 40^\circ \] ### Step 6: Evaluate \( \tan 60^\circ \) Since \( \tan 60^\circ = \sqrt{3} \), we can simplify: \[ \tan 20^\circ + \tan 40^\circ + \tan 80^\circ - \sqrt{3} = 0 \] ### Step 7: Set the equation to zero Thus, we have: \[ 0 = \lambda \sin 40^\circ \] Since \( \sin 40^\circ \neq 0 \), we conclude that \( \lambda = 0 \). ### Step 8: Find \( \lambda/4 \) Finally, we need to find \( \frac{\lambda}{4} \): \[ \frac{\lambda}{4} = \frac{0}{4} = 0 \] ### Final Answer: \[ \frac{\lambda}{4} = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

tan 20^(@) tan 40^(@) tan 80^(@) = tan 60^(@)

Prove that: tan10^(@) tan20^(@)tan70^(@)tan80^(@)=1

If tan20^0+tan40^0+tan80^0-tan60^0 = lambdasin40^0 , find lambda.

Evaluate tan20^(@)tan25^(@)tan65^(@)tan70^(@) .

Prove that tan40^(@) + 2tan10^(@) = tan50^(@)

tan 46^(@) tan 14^(@)-tan74^(@) tan 14^(@)+tan74^(@) tan 46^(@) is equal to

tan 70^(@) -tan 20^(@) - 2 tan 40^(@) = 4 tan 10 ^(@).

Evaluate (tan60^(@)-tan30^(@))/(1+tan60^(@)tan30^(@)) .

The terms tan80^(@), tan70^(@)+tan10^(@) and tan10^(@) are in

Prove that: tan20^0tan40^0tan80^0=tan60^0