Home
Class 12
MATHS
If K^(@) lies between 360^(@) and 540^(@...

If `K^(@)` lies between `360^(@) and 540^(@) and K^(@)` satisfies the equation
`1+cos10x cos6x =2cos^(2)8x+sin^(2)8x," then "(K)/(10)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 1 + \cos(10x) \cos(6x) = 2 \cos^2(8x) + \sin^2(8x) \) and find the value of \( \frac{K}{10} \) where \( K \) lies between \( 360^\circ \) and \( 540^\circ \), we will follow these steps: ### Step 1: Simplify the Left Side We start with the left side of the equation: \[ 1 + \cos(10x) \cos(6x) \] Using the product-to-sum identities, we know: \[ \cos A \cos B = \frac{1}{2} (\cos(A+B) + \cos(A-B)) \] So, we can rewrite \( \cos(10x) \cos(6x) \): \[ \cos(10x) \cos(6x) = \frac{1}{2} (\cos(16x) + \cos(4x)) \] Thus, the left side becomes: \[ 1 + \frac{1}{2} (\cos(16x) + \cos(4x)) = \frac{2}{2} + \frac{1}{2} (\cos(16x) + \cos(4x)) = \frac{2 + \cos(16x) + \cos(4x)}{2} \] ### Step 2: Simplify the Right Side Now, we simplify the right side: \[ 2 \cos^2(8x) + \sin^2(8x) \] Using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ 2 \cos^2(8x) + (1 - \cos^2(8x)) = 2 \cos^2(8x) + 1 - \cos^2(8x) = \cos^2(8x) + 1 \] We can express \( \cos^2(8x) \) in terms of \( \cos(16x) \): \[ \cos^2(8x) = \frac{1 + \cos(16x)}{2} \] Thus, the right side becomes: \[ \cos^2(8x) + 1 = \frac{1 + \cos(16x)}{2} + 1 = \frac{1 + \cos(16x) + 2}{2} = \frac{3 + \cos(16x)}{2} \] ### Step 3: Set the Two Sides Equal Now we have: \[ \frac{2 + \cos(16x) + \cos(4x)}{2} = \frac{3 + \cos(16x)}{2} \] Multiplying both sides by 2 to eliminate the denominator: \[ 2 + \cos(16x) + \cos(4x) = 3 + \cos(16x) \] Subtracting \( \cos(16x) \) from both sides: \[ 2 + \cos(4x) = 3 \] Thus, we simplify to: \[ \cos(4x) = 1 \] ### Step 4: Solve for \( x \) The general solution for \( \cos \theta = 1 \) is: \[ \theta = 2n\pi \] So we have: \[ 4x = 2n\pi \implies x = \frac{n\pi}{2} \] ### Step 5: Find \( K \) We need to find \( K \) such that \( K \) lies between \( 360^\circ \) and \( 540^\circ \). We convert \( x \) to degrees: \[ x = \frac{n \cdot 180^\circ}{2} = 90n^\circ \] Now we check for values of \( n \): - For \( n = 4 \): \( x = 360^\circ \) - For \( n = 5 \): \( x = 450^\circ \) Since \( K \) must be between \( 360^\circ \) and \( 540^\circ \), we take \( K = 450^\circ \). ### Step 6: Calculate \( \frac{K}{10} \) Finally, we calculate: \[ \frac{K}{10} = \frac{450}{10} = 45 \] ### Final Answer Thus, the value of \( \frac{K}{10} \) is: \[ \boxed{45} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|1 Videos
  • COMPLEX NUMBERS

    VK JAISWAL ENGLISH|Exercise EXERCISE-5 : SUBJECTIVE TYPE PROBLEMS|8 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|22 Videos

Similar Questions

Explore conceptually related problems

The number of values of x lying in the inteval (-2pi, 2pi) satisfying the equation 1+cos 10x cos 6x=2 cos^(2)8x+sin^(2)8x is equal to

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

The general solution of the equation 8 cos x cos 2x cos 4x = sin 6x//sin x is

Consider the equation sin^(-1)(x^(2)-6x+(17)/(2))+cos^(-1)k=(pi)/(2) , then :

The sum of all the values of x between 0 and 4pi which satisfy the equation sinxsqrt(8cos^(2)x)=1 is kpi , then the value of (k)/(5) is equal to

If y=cos x cos 2x cos 4x cos 8x , then (dy)/(dx)" at "x=(pi)/(2) is

Prove that : cos 4x = 1 - 8 sin^2 x cos^2 x .

If sin x+sin^2=1 , then cos^8 x+2 cos^6 x+cos^4 x=

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

" if " int (sin 2x- cos 2x) dx=(1)/(sqrt(2)) sin (2x-k)+c " then " k=?

VK JAISWAL ENGLISH-COMPOUND ANGLES-Exercise-5 : Subjective Type Problems
  1. If sin^(3)theta+sin^(3)(theta+(2pi)/(3))+sin^(3)(theta+(4pi)/(3))=a s...

    Text Solution

    |

  2. If sum(r=1)^(n)((tan 2^(r-1))/(cos2^(r )))=tanp^(n)-tan q, then find t...

    Text Solution

    |

  3. If x=sec theta-tan theta and y="cosec"theta+cot theta," then " y-x-xy...

    Text Solution

    |

  4. Prove that: cos18^0-sin18^0 = sqrt(2)sin27^0

    Text Solution

    |

  5. The value of 3(sin1-cos1)^(4)+6(sin1+cos1)^(2)+4(sin^(6)1+cos^(6)1) i...

    Text Solution

    |

  6. If x=alpha satisfy the equation 3^(sin2x+2cos^(2)x)+3^(1-sin2x+2sin^(...

    Text Solution

    |

  7. If y=(sin theta+"cosec" theta)^(2) +(cos theta+sec theta)^(2), then m...

    Text Solution

    |

  8. If tan20^(@)+tan40^(@)+tan80^(@)-tan60^(@)=lambda sin40^(@), then lamb...

    Text Solution

    |

  9. If K^(@) lies between 360^(@) and 540^(@) and K^(@) satisfies the equa...

    Text Solution

    |

  10. If cos20^(@)+2sin^(2)55^(@)=1+sqrt(2)sinK^(@), K in (0, 90^(@)), then ...

    Text Solution

    |

  11. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  12. Let alpha be the smallest integral value of x, x gt 0 such that tan19...

    Text Solution

    |

  13. Find the value of the expression (sin20^(@)(4 cos20^(@)+1))/(cos20^(@)...

    Text Solution

    |

  14. If the value of cos((2pi)/7) + cos((4pi)/7)+cos((6pi)/7)+cos((7pi)/7)=...

    Text Solution

    |

  15. If cosA=(3)/(4) and k sin ((A)/(2))sin((5A)/(2))=(11)/(8). Find k.

    Text Solution

    |

  16. Find the least value of the expression 3sin^(2)x+4 cos^(2)x.

    Text Solution

    |

  17. If tan alpha and tan beta are the roots of equation x^(2)-12x-3=0, the...

    Text Solution

    |

  18. The value of (cos24^(@))/(2tan33^(@)sin^(2)57^(@))+(sin162^(@))/(sin1...

    Text Solution

    |

  19. Find the value of tantheta(1+sec2theta)(1+sec4theta)(1+sec8theta), whe...

    Text Solution

    |

  20. If lambda be the minimum value of y= (sinx+"cosec"x)^(2)+(cosx+secx)^...

    Text Solution

    |