Home
Class 12
MATHS
A solution of the equation cot^(-1)2=co...

A solution of the equation `cot^(-1)2=cot^(-1)x+cot^(-1)(10-x)" where " 1 lt x lt 9` is : (a) 7 (b) 3 (c) 2 (d) 5

A

7

B

3

C

2

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot^{-1}(2) = \cot^{-1}(x) + \cot^{-1}(10 - x) \) where \( 1 < x < 9 \), we can follow these steps: ### Step 1: Use the identity for the sum of inverse cotangents We know the identity: \[ \cot^{-1}(A) + \cot^{-1}(B) = \cot^{-1}\left(\frac{AB - 1}{A + B}\right) \] Let \( A = x \) and \( B = 10 - x \). Then, we can rewrite the equation as: \[ \cot^{-1}(2) = \cot^{-1}\left(\frac{x(10 - x) - 1}{x + (10 - x)}\right) \] ### Step 2: Simplify the right-hand side The denominator simplifies to: \[ x + (10 - x) = 10 \] So, we have: \[ \cot^{-1}(2) = \cot^{-1}\left(\frac{x(10 - x) - 1}{10}\right) \] ### Step 3: Apply the cotangent function Taking the cotangent of both sides gives: \[ 2 = \frac{x(10 - x) - 1}{10} \] ### Step 4: Cross-multiply to eliminate the fraction Cross-multiplying yields: \[ 20 = x(10 - x) - 1 \] ### Step 5: Rearrange the equation Rearranging gives: \[ x(10 - x) = 21 \] This simplifies to: \[ 10x - x^2 = 21 \] Rearranging further, we get: \[ x^2 - 10x + 21 = 0 \] ### Step 6: Solve the quadratic equation We can factor the quadratic equation: \[ (x - 7)(x - 3) = 0 \] Thus, the solutions are: \[ x = 7 \quad \text{or} \quad x = 3 \] ### Step 7: Check the range of x Since \( 1 < x < 9 \), both \( x = 7 \) and \( x = 3 \) are valid solutions. ### Conclusion The solutions to the equation are \( x = 7 \) and \( x = 3 \). Therefore, both options (a) 7 and (b) 3 are correct. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-3 : Comprehension Type Problems|2 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-4 : Matching Type Problems|3 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VK JAISWAL ENGLISH|Exercise Exercise-5 : Subjective Type Problems|6 Videos
  • INDEFINITE AND DEFINITE INTEGRATION

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|29 Videos
  • LIMIT

    VK JAISWAL ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos

Similar Questions

Explore conceptually related problems

Solution(s) of the equation sin(-pi/3+tan^(-1)x+cot^(-1)x)=1/2 is/are

The value(s) of x satisfying the equation cot^(-1)(x)+cot^(-1)(17-x)=cot^(-1)(3) is/are (a)4 (b) 3 (c) 12 (d) 13

2cot^(- 1)5+cot^(- 1)7+2cot^(- 1)8=pi/4

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Find the range of y = (cot^(-1) x) (cot^(-1) (-x))

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

Prove that : cot^(-1)7+cot^(-1)8+cot^(-1)18=cot^(-1)3

solve the equation cot^-1 x + tan^-1 3 = pi/2

Which of the following is the solution set of the equation 2cos^(-1)x=cot^(-1)((2x-1)/(2xsqrt(1-x^2)))? (a)(0.1) (b) (-1,1)-{0} (c) (-1,0) (d) (-1,1)