Home
Class 11
PHYSICS
The greatest and least resulant of two f...

The greatest and least resulant of two forces acting at a point is `10N` and `6N`,respectively. If each force is increased by `3N`, find the resulant of new forces when acting at a point at an angle of `90^(@)` with each other .

Text Solution

AI Generated Solution

To solve the problem, we will follow these steps: ### Step 1: Understand the Given Information We are given: - The greatest resultant of two forces, \( R_{max} = 10 \, N \) - The least resultant of two forces, \( R_{min} = 6 \, N \) ### Step 2: Set Up the Equations ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|19 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.2|13 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

The greatest and least resultant of two forces acting at a point is 29 kgwt and 5 kgwt respectively . If each force is increased by 3 kgwt , find the resultant of the two new forces when acting at right angles to each other ?

The greater and least resultant of two forces are 7 N and 3 N respectively. If each of the force is increased by 3N and applied at 60°. The magnitude of the resultant is

Maximum and minimum values of the resultant of two forces acting at a point are 7 N and 3 N respectively . The smaller force will be equal to

Maximum and minimum values of the resultant of two forces acting at a point are 7 N and 3N respectively. The smaller force will be equal to x N. Find x

The resultant of two forces acting at an angle of 120^(@) is 10 N. If one of the force is 10 N. The other force is

The resultant of two forces acting at an angle of 150° 10 kgwt, and is perpendicular to one of the forces. The magnitude of smaller force is

The sum of magnitudes of two forces acting at a point is 16 N . If the resultant force is 8 N and its direction is perpendicular to smaller force, then the forces are :-

Vector sum of two forces of 10N and 6N cannot be:

Vector sum of two forces of 10N and 6N cannot be:

Two forces F_(1)=1N and F_(2)=2N act along the lines x=0 and y=0, respectively. Then find the resultant of forces.