Home
Class 11
PHYSICS
Find the dot product of two vectors vec(...

Find the dot product of two vectors `vec(A)=3hat(i)+2hat(j)-4hat(k)` and `vec(B)=2hat(i)-3hat(j)-6hat(k)`.

Text Solution

AI Generated Solution

To find the dot product of the vectors \(\vec{A} = 3\hat{i} + 2\hat{j} - 4\hat{k}\) and \(\vec{B} = 2\hat{i} - 3\hat{j} - 6\hat{k}\), we will follow these steps: ### Step 1: Identify the components of the vectors The components of vector \(\vec{A}\) are: - \(A_x = 3\) (coefficient of \(\hat{i}\)) - \(A_y = 2\) (coefficient of \(\hat{j}\)) - \(A_z = -4\) (coefficient of \(\hat{k}\)) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|19 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.2|13 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the scalar and vector products of two vectors vec(A)=(3hat(i)-4hat(j)+5hat(k)) "and" vec(B)=(-2hat(i)+hat(j)-3hat(k)) .

Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)= (hat(i)-2hat(j)+3hat(k)) .

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

A unit vector in the dirction of resultant vector of vec(A)= -2hat(i)+3hat(j)+hat(k) and vec(B)= hat(i)+2hat(j)-4hat(k) is

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

Calculate the area of the parallelogram when adjacent sides are given by the vectors vec(A)=hat(i)+2hat(j)+3hat(k) and vec(B)=2hat(i)-3hat(j)+hat(k) .

Find the area of the parallelogram whose diagonals are determined by vectors vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)

If vec(A) and vec(B) are perpendicular Vectors and vector vec(A)= 5hat(i)+7hat(j)-3hat(k) and vec(B)= 2hat(i)+2hat(j)-ahat(k) . The value of a is

Given two vectors vec(A) = -hat(i) + 2hat(j) - 3hat(k) and vec(B) = 4hat(i) - 2hat(j) + 6hat(k) . The angle made by (A+B) with x-axis is :