Home
Class 11
PHYSICS
Find the value of m so that the vector 3...

Find the value of `m` so that the vector `3hat(i)-2hat(j)+hat(k)` may be perpendicular to the vector `2hat(i)+6hat(j)+mhat(k)`.

Text Solution

Verified by Experts

The given vectors will be perpendicular of their dot product is zero.
`(3hat(i)-2hat(j)+hat(k)).(2hat(i)+6hat(j)+mhat(k))=0`
`6(hat(i).hat(i))-12(hat(j).hat(j))+m(hat(k).hat(k))=0`
or `6-12+m=0`
or `m-6=0` or `m=6`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|19 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.2|13 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Find the vector component of a vector 2hat(i)+3hat(j)+6hat(k) along and perpendicular to the non-zero vector 2hat(i)+hat(j)+2hat(k) .

If a vector 2hat(i)+3hat(j)+8hat(k) is perpendicular to the vector 4hat(j)-4hat(i)+alpha hat(k) . Then the value of alpha is

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Write the value of lamda so that the vectors vec(a)= 2hat(i) + lamda hat(j) + hat(k) and vec(b)= hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other?

Find the value of n such that the vectors 4 hat(i) + 3hat(j) - 7hat(k) and 5 hat(i) + 2hat(j) - nhat(k) may be orthogonal .

Find the vector equation of a plane passing through a point having position vector 2 hat i- hat j+ hat k and perpendicular to the vector 4 hat i+2 hat j-3 hat kdot

The value of 'a' so that the vectors 2 hat(i) - 3hat(j) + 4hat(k) and a hat(i) + 6hat(j) - 8hat(k) are collinear

If a vector 2 hat (i) + 3 hat(j) + 8 hat(k) is perpendicular to the vector - 4 hat(i) + 4 hat(j) + alpha(k) . Then the value of alpha is

A vector perpendicular to hat(i)+hat(j)+hat(k) is

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.