Home
Class 11
PHYSICS
Prove that (vec(A)+2vec(B)).(2vec(A)-3ve...

Prove that `(vec(A)+2vec(B)).(2vec(A)-3vec(B))=2A^(2)+AB cos theta-6B^(2)`.

Text Solution

AI Generated Solution

To prove that \((\vec{A} + 2\vec{B}) \cdot (2\vec{A} - 3\vec{B}) = 2A^2 + AB \cos \theta - 6B^2\), we will start by expanding the left-hand side (LHS) of the equation. ### Step 1: Expand the LHS We start with the expression: \[ (\vec{A} + 2\vec{B}) \cdot (2\vec{A} - 3\vec{B}) \] Using the distributive property of the dot product, we can expand this as follows: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.1|19 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.2|13 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that ( vec(A) + vec(B)) xx ( vec(A) - vec(B)) = 2 (vec(B) xx vec(A))

If vec(A) and vec(B) are two non - zero vectors such that |vec(A)+vec(B)|=(|vec(A)-vec(B)|)/(2) and |vec(A)|=2|vec(B)| then the angle between vec(A) and vec(B) is :

Prove that abs(vec(a) times vec(b))=(vec(a)*vec(b))tantheta , where theta is the angle between vec(a) and vec(b) .

Prove the inequality (vec(a) * vec(b) )^(2) le |vec(a)|^(2)|vec(b)|^(2)

Prove that vec(a)[(vec(b) + vec(c)) xx (vec(a) + 3vec(b) + 4vec(c))] = [ vec(a) vec(b) vec(c)]

Prove that vec(a). {(vec(b) + vec(c)) xx (vec(a) + 2vec(b) + 3vec(c))} = [vec(a) vec(b) vec(c)] .

If vec(a) and vec( b) are inclined at an angle of 120^(@) and |vec(a)| =1, |vec(b)|=2 , then t ((vec(a) + 3 vec(b)) xx (3 vec(a) - vec(b)))^(2) is equal to

If |vec(A)| = 4N, |vec(B)| = 3N the value of |vec(A) xx vec(B)|^(2) + |vec(A).vec(B)|^(2) =

If | vec a|=a and | vec b|=b , prove that ( vec a/(a^2)- vec b/(b^2))^2 = (( vec a- vec b)/(a b))^2 .

Prove that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b) and interpret it geometrically.