Home
Class 11
PHYSICS
a. Calculate vec(r )=vec(a)-vec(b)+vec(c...

a. Calculate `vec(r )=vec(a)-vec(b)+vec(c )`, where `vec(a)=5hat(i)+4hat(j)-6hat(k)`,
`vec(b)= -2hat(i)+2hat(j)+3hat(k)`, and `vec(c )= 4hat(i)+3hat(j)+2hat(k)`.
b. Calculate the angle between `vec(r )` and the `z`-axis.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first calculate the vector \(\vec{r}\) using the given vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Then, we will find the angle between \(\vec{r}\) and the \(z\)-axis. ### Part a: Calculate \(\vec{r} = \vec{a} - \vec{b} + \vec{c}\) 1. **Write down the given vectors:** - \(\vec{a} = 5\hat{i} + 4\hat{j} - 6\hat{k}\) - \(\vec{b} = -2\hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{c} = 4\hat{i} + 3\hat{j} + 2\hat{k}\) 2. **Calculate \(\vec{a} - \vec{b}\):** \[ \vec{a} - \vec{b} = (5\hat{i} + 4\hat{j} - 6\hat{k}) - (-2\hat{i} + 2\hat{j} + 3\hat{k}) \] \[ = (5 + 2)\hat{i} + (4 - 2)\hat{j} + (-6 - 3)\hat{k} \] \[ = 7\hat{i} + 2\hat{j} - 9\hat{k} \] 3. **Now add \(\vec{c}\):** \[ \vec{r} = (7\hat{i} + 2\hat{j} - 9\hat{k}) + (4\hat{i} + 3\hat{j} + 2\hat{k}) \] \[ = (7 + 4)\hat{i} + (2 + 3)\hat{j} + (-9 + 2)\hat{k} \] \[ = 11\hat{i} + 5\hat{j} - 7\hat{k} \] Thus, \(\vec{r} = 11\hat{i} + 5\hat{j} - 7\hat{k}\). ### Part b: Calculate the angle between \(\vec{r}\) and the \(z\)-axis 1. **Identify the \(z\)-component of \(\vec{r}\):** - The \(z\)-component of \(\vec{r}\) is \(-7\). 2. **Calculate the magnitude of \(\vec{r}\):** \[ |\vec{r}| = \sqrt{(11)^2 + (5)^2 + (-7)^2} \] \[ = \sqrt{121 + 25 + 49} \] \[ = \sqrt{195} \] 3. **Use the cosine formula to find the angle \(\gamma\) between \(\vec{r}\) and the \(z\)-axis:** \[ \cos \gamma = \frac{\text{z-component of } \vec{r}}{|\vec{r}|} \] \[ \cos \gamma = \frac{-7}{\sqrt{195}} \] 4. **Calculate the angle \(\gamma\):** \[ \gamma = \cos^{-1}\left(\frac{-7}{\sqrt{195}}\right) \] ### Final Answers: - \(\vec{r} = 11\hat{i} + 5\hat{j} - 7\hat{k}\) - \(\gamma = \cos^{-1}\left(\frac{-7}{\sqrt{195}}\right)\)

To solve the problem step by step, we will first calculate the vector \(\vec{r}\) using the given vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Then, we will find the angle between \(\vec{r}\) and the \(z\)-axis. ### Part a: Calculate \(\vec{r} = \vec{a} - \vec{b} + \vec{c}\) 1. **Write down the given vectors:** - \(\vec{a} = 5\hat{i} + 4\hat{j} - 6\hat{k}\) - \(\vec{b} = -2\hat{i} + 2\hat{j} + 3\hat{k}\) - \(\vec{c} = 4\hat{i} + 3\hat{j} + 2\hat{k}\) ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Single Correct|51 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise Multiple Correct|5 Videos
  • VECTORS

    CENGAGE PHYSICS ENGLISH|Exercise Exercise 3.2|13 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS ENGLISH|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the projection of vec(b)+ vec(c ) on vec(a) where vec(a)= 2 hat(i) -2hat(j) + hat(k), vec(b)= hat(i) + 2hat(j)- 2hat(k), vec(c ) = 2hat(i) - hat(j) + 4hat(k)

Given vec(A) = hat(i) - 2hat(j) - 3hat(k) , vec(B) = 4hat(i) - 2hat(j) + 6hat(k) .Calculate the angle made by (vec(A) +vec(B)) with the x - axis ?

If vec(A) = 5 hat(i) - 3 hat(j) + 4 hat(k) and vec(B) = hat(j) - hat(k) , find the sine of the angle between vec(a) and vec(B)

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

CENGAGE PHYSICS ENGLISH-VECTORS-Exercise Subjective
  1. Unit vector hat(P) and hat(Q) are inclined at an angle theta. Prove th...

    Text Solution

    |

  2. A sail boat sails 2km due east, 5km 37^(@) south of east, and finally...

    Text Solution

    |

  3. Two forces of magnitudes P and Q are inclined at an angle (theta). The...

    Text Solution

    |

  4. A vector vec(B) which has a magnitude 8.0 is added to a vector vec(A) ...

    Text Solution

    |

  5. Three vector as shown in (figure) have magnitudes |vec(a)|=3,|vec(b)|=...

    Text Solution

    |

  6. A bouy is attached to three tugboats by three ropes. The tugboats are ...

    Text Solution

    |

  7. Two horizontal forces of magnitudes of 10N and P N act on a particle. ...

    Text Solution

    |

  8. The position vectors of two balls are given by vec(r )(1)=2 (m)i+7(m...

    Text Solution

    |

  9. A particle whose speed is 50ms^(-1) moves along the line from A(2,1) t...

    Text Solution

    |

  10. A particle travels with speed 50ms^(-1) from the point (3,-7) in a dir...

    Text Solution

    |

  11. A particle has an initial velocity 3 hat(i) + 4hat(j) and an accelerat...

    Text Solution

    |

  12. Forces X,Y and Z have magnitudes 10N 5(sqrt(3)-1) N and 5(sqrt(3)+1) N...

    Text Solution

    |

  13. A particle of m=5kg is momentarily at rest at x= at t=. It is acted up...

    Text Solution

    |

  14. A spy plane is being tacked by a radar. At t=0, its position is report...

    Text Solution

    |

  15. a. Calculate vec(r )=vec(a)-vec(b)+vec(c ), where vec(a)=5hat(i)+4hat(...

    Text Solution

    |

  16. A force vec(F)=3hat(i)+2hat(j)+chat(k)N causes a displacement vec(r )=...

    Text Solution

    |

  17. When two vectors of magnitudes P and Q are inclined at an angle theta,...

    Text Solution

    |

  18. Find the magnitudes of the unknown forces if the sum of all forces is ...

    Text Solution

    |

  19. Three boys are pulling a heavy trolled by means of three ropes. The bo...

    Text Solution

    |

  20. If vec(A)=2hat(i)+hat(j) and vec(B)=hat(i)-hat(j), sketch vector graph...

    Text Solution

    |