Initial velocity of the flat car is zero. Let `v` be its velocity at time `t` and `m` be its mass at that instant. Then
At `t=0,v=0` and `m=m_(0)`
At `t=t,v=v` and `m=m_(0)+mut`
Here, `v_(r)=u-v=0-v=-v`
here `u` is the velocity of mass being added in the horizontal direction which is zero.
`(dm)/(dt)=mu`
Apply `F+v_(rel)=(dm)/(dt)=(mdv)/(dt)` we get
`F+(-v)mu=(m_(0)+mut)(dv)/(dt)`
or `int_(0)^(v)(dv)/(F-muV)=int_(0)^(t)(dt)/(m_(0)+mut)`
`implies-1/mu[(n(F-muv)]_(0)^(v)1/(-mu)[In(m_(0)+mut)]_(0)^(t)`
`impliesIn(F/(F-muv))=(n((m_(0)+mut)/m_(0)))`
`implies F/(F-muV)=(m_(0)+mut)/m_(0)`
or `v=(Ft)/(m_(0)+mut)` ..........ii
from eqn i
`a=(F-muv)/m=((F-(Fmut)/(m_(0)+mut))/(mu_(0)+mut))`
or `a=(Fm_(0))/((m_(0)+mut)^(2))`