Home
Class 11
PHYSICS
The density of newly discovered planet i...

The density of newly discovered planet is twice that of the earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is R, the radius of the planet would be

Text Solution

Verified by Experts

The correct Answer is:
2

`g=(GM)/(R^(2))=G4/3piR^(3)rho`
`g'=4/3GpirhoimpliesgpropRrho`
`g-propR'rho'impliesrho'=2rho`
Given `g/(g')=1`
R//R'=2`
Promotional Banner

Topper's Solved these Questions

  • GRAVITATION

    CENGAGE PHYSICS ENGLISH|Exercise Fill In The Blanks|5 Videos
  • GRAVITATION

    CENGAGE PHYSICS ENGLISH|Exercise True/False|1 Videos
  • GRAVITATION

    CENGAGE PHYSICS ENGLISH|Exercise Linked Comprehension|23 Videos
  • FLUID MECHANICS

    CENGAGE PHYSICS ENGLISH|Exercise INTEGER_TYPE|1 Videos
  • KINEMATICS-1

    CENGAGE PHYSICS ENGLISH|Exercise Integer|9 Videos

Similar Questions

Explore conceptually related problems

The density of a newly discovered planet is twice that of earth. The acceleration due to gravity at the surface of the planet is equal to that at the surface of the earth. If the radius of the earth is R , the radius of the planet would be

Acceleration due to gravity at surface of a planet is equal to that at surface of earth and density is 1.5 times that of earth. If radius is R. radius of planet is

A planet has twice the density of earth but the acceleration due to gravity on its surface is exactly the same as that on the surface of earth. Its radius in terms of earth's radius R will be

If g is the acceleration due to gravity on the surface of the earth , its value at a height equal to double the radius of the earth is

How is the acceleration due to gravity on the surface of the earth related to its mass and radius ?

The acceleration due to gravity on the surface of a planet is one - fourth of the value on Earth. When a brass ball is brought to this planet , its

The acceleration due to gravity near the surface of a planet of radius R and density d is proportional to

At what height above the surface of the earth will the acceleration due to gravity be 25% of its value on the surface of the earth ? Assume that the radius of the earth is 6400 km .

If R is the radius of the earth and g the acceleration due to gravity on the earth's surface, the mean density of the earth is

The ratio of acceleration due to gravity at a height 3 R above earth's surface to the acceleration due to gravity on the surface of earth is (R = radius of earth)