Home
Class 12
PHYSICS
The activity of a sample of radioactive ...

The activity of a sample of radioactive material is `R_(1)` at time `t_(1)andR_(2)"at time"t_(2)(t_(2)gtt_(1))`. Its mean life is T. Then,

A

`A_(1)t_(1)=A_(2)t_(2)`

B

`A_(1)-A_(2)=t_(2)-t_(1)`

C

`A_(2)=A_(1)e^((t_(1)-t_(2)))//T)`

D

`A_(2)=A_(1)e^((t_(1)//t_(2)))//T)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR PHYSICS

    CENGAGE PHYSICS ENGLISH|Exercise ddp.5.4|15 Videos
  • NUCLEAR PHYSICS

    CENGAGE PHYSICS ENGLISH|Exercise ddp.5.5|14 Videos
  • NUCLEAR PHYSICS

    CENGAGE PHYSICS ENGLISH|Exercise ddp.5.2|15 Videos
  • MISCELLANEOUS VOLUME 5

    CENGAGE PHYSICS ENGLISH|Exercise Integer|12 Videos
  • PHOTOELECTRIC EFFECT

    CENGAGE PHYSICS ENGLISH|Exercise Integer Type|4 Videos

Similar Questions

Explore conceptually related problems

The activity of a sample of a radioactive meterial is A_1 , at time t_1 , and A_2 at time t_2(t_2 gt t_1) . If its mean life T, then

The activity of a radioactive substance is R_(1) at time t_(1) and R_(2) at time t_(2)(gt t_(1)) . Its decay cosntant is lambda . Then .

The activity of a radioactive susbtance is R_(1) at time t_(1) and R_(2) at time t_(2) (>t1). its decay constant is λ. Then, number of atoms decayed between time interval t_(1) and t_(2) are

Activity of a radioactive substance is A_(1) at time t_(1) and A_(2) at time t_(2)(t_(2) gt t_(1)) , then the ratio of f (A_(2))/(A_(1)) is:

The radioactivity of a sample is R_(1) at a time T_(1) and R_(2) at time T_(2) . If the half-life of the specimen is T, the number of atoms that have disintegrated in the time (T_(2) -T_(1)) is proporational to

The radioactive of a sample is R_(1) at a time T_(1) and R_(2) at a time T_(2) . If the half-life of the specimen is T , the number of atoms that have disintegrated in the time (T_(2)-T_(1)) is equal to (n(R_(1)-R_(2))T)/(ln4) . Here n is some integral number. What is the value of n?

Radioactivity of a sample at T_(1) time is R_(1) and at time T_(2) is R_(2). If half-life of sample is T, then in time (T_(2)-T_(1)), the number of decayed atoms is proportional to

The half-life of a radioactive sample is T . If the activities of the sample at time t_(1) and t_(2) (t_(1) lt t_(2)) and R_(1) and R_(2) respectively, then the number of atoms disintergrated in time t_(2)-t_(1) is proportional to

In a radioactive material the activity at time t_(1) is R_(1) and at a later time t_(2) , it is R_(2) . If the decay constant of the material is lambda , then

The relation between half-life T of a radioactive sample and its mean life tau is: