Home
Class 12
CHEMISTRY
For the given reaction: H(2) + I(2) ra...

For the given reaction:
`H_(2) + I_(2) rarr 2HI`
Given: `{:(T(K),1//T(K^(-1)),log k,),(769,1.3 xx 10^(-3),2.9,),(67,1.5 xx 10^(-3),1.1,):}`
The activation energy will be

A

`41.4 kcal mol^(-1)`

B

`40 kcal mol^(-1)`

C

`-41.4 kcal mol^(-1)`

D

`-40 kcal mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the activation energy (Ea) for the reaction \( H_2 + I_2 \rightarrow 2HI \) using the provided data, we can use the Arrhenius equation in the logarithmic form. Here’s a step-by-step solution: ### Step 1: Identify the given data We have the following data from the problem: - \( T_1 = 667 \, K \) (Temperature 1) - \( T_2 = 769 \, K \) (Temperature 2) - \( \log K_1 = 1.1 \) (Rate constant at \( T_1 \)) - \( \log K_2 = 2.9 \) (Rate constant at \( T_2 \)) ### Step 2: Calculate the difference in logarithm of rate constants Using the values of \( \log K_1 \) and \( \log K_2 \): \[ \log K_2 - \log K_1 = 2.9 - 1.1 = 1.8 \] ### Step 3: Use the Arrhenius equation The Arrhenius equation in logarithmic form is given by: \[ \log \frac{K_2}{K_1} = \frac{E_a}{2.303 R} \cdot \frac{T_2 - T_1}{T_1 T_2} \] Where: - \( R \) is the universal gas constant. In calories, \( R = 2 \, cal/(K \cdot mol) \). ### Step 4: Calculate \( T_2 - T_1 \) \[ T_2 - T_1 = 769 - 667 = 102 \, K \] ### Step 5: Calculate \( T_1 T_2 \) \[ T_1 T_2 = 667 \cdot 769 \] Calculating this gives: \[ T_1 T_2 = 513,763 \, K^2 \] ### Step 6: Substitute values into the Arrhenius equation Now substituting the values into the Arrhenius equation: \[ 1.8 = \frac{E_a}{2.303 \cdot 2} \cdot \frac{102}{513763} \] ### Step 7: Rearranging to solve for \( E_a \) Rearranging gives: \[ E_a = 1.8 \cdot 2.303 \cdot 2 \cdot \frac{513763}{102} \] ### Step 8: Calculate \( E_a \) Calculating the above expression: 1. Calculate \( 2.303 \cdot 2 = 4.606 \) 2. Then, \( \frac{513763}{102} \approx 5036.4 \) 3. Now, \( E_a = 1.8 \cdot 4.606 \cdot 5036.4 \) Calculating this gives: \[ E_a \approx 41400 \, cal/mol = 41.4 \, kcal/mol \] ### Final Answer Thus, the activation energy \( E_a \) is approximately \( 41.4 \, kcal/mol \). ---

To calculate the activation energy (Ea) for the reaction \( H_2 + I_2 \rightarrow 2HI \) using the provided data, we can use the Arrhenius equation in the logarithmic form. Here’s a step-by-step solution: ### Step 1: Identify the given data We have the following data from the problem: - \( T_1 = 667 \, K \) (Temperature 1) - \( T_2 = 769 \, K \) (Temperature 2) - \( \log K_1 = 1.1 \) (Rate constant at \( T_1 \)) - \( \log K_2 = 2.9 \) (Rate constant at \( T_2 \)) ...
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL KINETICS

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Linked Comprehension|59 Videos
  • CHEMICAL KINETICS

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Multiple Correct|33 Videos
  • CHEMICAL KINETICS

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex 4.3 More Than One Correct|5 Videos
  • CARBOXYLIC ACIDS AND THEIR DERIVATIVES

    CENGAGE CHEMISTRY ENGLISH|Exercise Exercises Archives (Analytical And Descriptive)|34 Videos
  • COORDINATION COMPOUNDS

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Subjective|18 Videos

Similar Questions

Explore conceptually related problems

For the reaction H_(2) (g)+I_(2)(g) rarr 2HI(g) , the rate of disappearance of H_(2) is 1.0 xx 10^(-4) mol L^(-1) s^(-1) . The rate of appearance of HI will be

The rate constant of a reactant is 1.5 xx 10^(-3) at 25^(@)C and 2.1 xx 10^(-2) at 60^(@)C . The activation energy is

For the decompoistion of HI at 1000 K(2HI rarr H_(2)+I_(2)) , following data were obtained: |{:([HI] (M),"Rate of decomposition of HI" (mol L^(-1) s^(-1))),(0.1,2.75 xx 10^(-8)),(0.2,11 xx 10^(-8)),(0.3,24.75 xx 10^(-8)):}| The order of reaction is

For the decompoistion of HI at 1000 K(2HI rarr H_(2)+I_(2)) , following data were obtained: |{:([HI] (M),"Rate of decomposition of HI" (mol L^(-1) s^(-1))),(0.1,2.75 xx 10^(-8)),(0.2,11 xx 10^(-8)),(0.3,24.75 xx 10^(-8)):}| The order of reaction is

Calculate the equilibrium constant (K) for the formation of NH^ in the following reaction: N_2(g) + 3H_2(g) At equilibrium, the concentration of NH_3 , H_2 and N_2 are 1.2 xx 10^(-2) ,3.0 xx 10^(-2) and 1.5 xx 10^(-2) M respectively.

For a decomposition reaction, the values of rate constant k at two different temperatures are given below: K_1 = 2.15 xx 10 ^(-8) L mol^(-1) s^(-1) at 650 K K_2 = 2.39 xx 10^(-7) L mol s^(-1) at 700 K Calculate the value of activation energy for this reaction. (R = 8.314 JK ^(-1) mol^(-1) )

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) =- 206.8 J K^(-1) mol^(-1) .

Calculate the standard free energy change for the reaction: H_(2)(g) +I_(2)(g) rarr 2HI(g), DeltaH^(Theta) = 51.9 kJ mol^(-1) Given: S^(Theta) (H_(2)) = 130.6 J K^(-1) mol^(-1) , S^(Theta) (I_(2)) = 116.7 J K^(-1) mol^(-1) and S^(Theta) (HI) = 206.8 J K^(-1) mol^(-1) .