Home
Class 12
CHEMISTRY
.^(60 m)Co rarr .^(60)Co emits gamma-rad...

`.^(60 m)Co rarr .^(60)Co` emits `gamma`-radiations of wavelength `3 xx 10^(-10)`. Assuming each nuclei emits one wavelength, with what mass per mole of two nuclei differ?
a. `4.43 xx 10^(-9) g` b. `4.43 xx 10^(-4) g`
c. `4.43 xx 10^(-3) g` d. `4.43 g`

A

a. `4.43 xx 10^(-9) g`

B

b. `4.43 xx 10^(-6) g`

C

c. `4.43 xx 10^(-3) g`

D

d. `4.43 g`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the difference in mass per mole of two nuclei of cobalt-60 that emit gamma radiation of a given wavelength. We will use the formula relating energy, wavelength, and mass. ### Step-by-Step Solution: 1. **Identify Given Values:** - Wavelength (λ) = \(3 \times 10^{-10}\) m - Avogadro's number (N) = \(6.022 \times 10^{23}\) mol\(^{-1}\) - Planck's constant (h) = \(6.626 \times 10^{-34}\) J·s - Speed of light (c) = \(3 \times 10^{8}\) m/s 2. **Calculate Energy (E) of One Photon:** The energy of a photon can be calculated using the formula: \[ E = \frac{hc}{\lambda} \] Substituting the values: \[ E = \frac{(6.626 \times 10^{-34} \text{ J·s})(3 \times 10^{8} \text{ m/s})}{3 \times 10^{-10} \text{ m}} \] \[ E = \frac{1.9878 \times 10^{-25}}{3 \times 10^{-10}} = 6.626 \times 10^{-16} \text{ J} \] 3. **Calculate the Mass Equivalent of the Energy:** Using Einstein's equation \(E = mc^2\), we can find the mass (m) equivalent of the energy: \[ m = \frac{E}{c^2} \] Substituting the values: \[ m = \frac{6.626 \times 10^{-16} \text{ J}}{(3 \times 10^{8} \text{ m/s})^2} \] \[ m = \frac{6.626 \times 10^{-16}}{9 \times 10^{16}} = 7.362 \times 10^{-33} \text{ kg} \] 4. **Convert Mass to Grams:** Since \(1 \text{ kg} = 1000 \text{ g}\): \[ m = 7.362 \times 10^{-33} \text{ kg} \times 1000 = 7.362 \times 10^{-30} \text{ g} \] 5. **Calculate Mass per Mole:** The mass per mole of photons (for one nucleus) is: \[ m_{\text{mole}} = N \times m = (6.022 \times 10^{23}) \times (7.362 \times 10^{-30} \text{ g}) \] \[ m_{\text{mole}} \approx 4.43 \times 10^{-6} \text{ g} \] 6. **Final Calculation for Two Nuclei:** Since we are interested in the difference in mass for two nuclei: \[ m_{\text{difference}} = 2 \times m_{\text{mole}} = 2 \times 4.43 \times 10^{-6} \text{ g} \approx 8.86 \times 10^{-6} \text{ g} \] 7. **Select the Correct Option:** The closest option to our calculated value is: - b. \(4.43 \times 10^{-4} \text{ g}\)

To solve the problem, we need to find the difference in mass per mole of two nuclei of cobalt-60 that emit gamma radiation of a given wavelength. We will use the formula relating energy, wavelength, and mass. ### Step-by-Step Solution: 1. **Identify Given Values:** - Wavelength (λ) = \(3 \times 10^{-10}\) m - Avogadro's number (N) = \(6.022 \times 10^{23}\) mol\(^{-1}\) - Planck's constant (h) = \(6.626 \times 10^{-34}\) J·s ...
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR CHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Solved Example|18 Videos
  • NUCLEAR CHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex6.1 Objective|15 Videos
  • NCERT BASED EXERCISE

    CENGAGE CHEMISTRY ENGLISH|Exercise Nuclear Chemistry (NCERT Exercise)|29 Videos
  • ORGANIC COMPOUNDS WITH FUNCTIONAL GROUP

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Analytical And Descriptive|24 Videos

Similar Questions

Explore conceptually related problems

Express each of the following in kilograms a) 5.84 xx 10^(-3) mg b) 58.34 g c) 0.584 g d) 5.873 xx 10^(-21) g

A metal of work function 4eV is exposed to a radiation of wavelength 140 xx 10^(-9) m. Find the stopping potential developed by it.

What is the wavelength (in m) of a particle of mass 6.62 xx 10^(-29) g moving with a velocity of 10^(3) ms^(-1) ?

One lakh atoms of gold weigh 3.271 xx 10^(-17) g. What is the atomic mass of gold?

Name the radiations of wavelength just (a) longer than 8 xx 10^(-7) m. (b) shorter than 4 xx 10^(-7) m

What is the molecular mass of a compound X , if its 3.0115 xx 10^(9) molucules weigh 1.0 xx 10^(-12) g?

A radioactive element has half life of 4.5 xx 10^(9) years. If 80 g of this was taken, the time taken for it to decay to 40 g will be a. 2.25 xx 10^(9) years b. 4.50 xx 10^(9) years c. 6.75 xx 10^(9) years d. 8.75 xx 10^(9) years

The photoelectric threshold wavelength of silver is 3250 xx 10^(-10) m . The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength 2536 xx 10^(-10) m is (Given h = 4.14 xx 10^(6) ms^(-1) eVs and c = 3 xx 10^(8) ms^(-1))

The photoelectric threshold wavelength of silver is 3250 xx 10^(-10) m . The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength 2536 xx 10^(-10) m is (Given h = 4.14 xx 10^(6) ms^(-1) eVs and c = 3 xx 10^(8) ms^(-1))

The wavelength associated with a ball of mass 100g moving with a speed of 10^(3) cm sec^(-1) (h=6.6 xx 10^(-34)Js) is: