Home
Class 12
CHEMISTRY
A wooden artifact sample gave activity 3...

A wooden artifact sample gave activity `32-beta` particles per second while the freshly cut wood gave activity of `64 beta` particles per second in Geiger Muller counter. Calculate the age of the wooden artifact `(t_(1//2) "of" C^(14) = 5760` years)

Text Solution

AI Generated Solution

To calculate the age of the wooden artifact using the given activity rates and the half-life of Carbon-14, we can follow these steps: ### Step 1: Identify the given values - Activity of freshly cut wood (N₀) = 64 beta particles/second - Activity of the wooden artifact (N) = 32 beta particles/second - Half-life of Carbon-14 (t₁/₂) = 5760 years ### Step 2: Calculate the decay constant (k) ...
Promotional Banner

Topper's Solved these Questions

  • NUCLEAR CHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Solved Example|18 Videos
  • NUCLEAR CHEMISTRY

    CENGAGE CHEMISTRY ENGLISH|Exercise Ex6.1 Objective|15 Videos
  • NCERT BASED EXERCISE

    CENGAGE CHEMISTRY ENGLISH|Exercise Nuclear Chemistry (NCERT Exercise)|29 Videos
  • ORGANIC COMPOUNDS WITH FUNCTIONAL GROUP

    CENGAGE CHEMISTRY ENGLISH|Exercise Archives Analytical And Descriptive|24 Videos

Similar Questions

Explore conceptually related problems

A piece of wood from an archaeological source shows a .^(14)C activity which is 60% of the activity found in fresh wood today. Calculate the age of the archaeological sample. ( t_(1//2) for .^(14)C = 5570 year)

The beta- activity of a sample of CO_(2) prepared form a contemporary wood gave a count rate of 25.5 counts per minute (cp m) . The same of CO_(2) form an ancient wooden statue gave a count rate of 20.5 cp m , in the same counter condition. Calculate its age to the nearest 50 year taking t_(1//2) for .^(14)C as 5770 year. What would be the expected count rate of an identical mass of CO_(2) form a sample which is 4000 year old?

(a) Calculate the activity of one mg sample ._(28^(Sr^(90))) whose half life period is 28 years. (b) An experiment is performed to determine the half-life of a radioactive substance which emits one beta particle for each decay process. Observation shown that an average of 8.4 beta- particles are emitted each second by 2.5 mg of the substance. the atomic weight of the substance is 230 . calculate the half0life of the substance. (c) Determine the quantity of ._(84^(Po^(210))) necessary to provide a source of alpha particle of 5mCi strength ( T_(1//2) for Po = 138 day).

Wooden artifact and freshly cut tree give 7.7 and "15.4 min"^(-1)g^(-1) of carbon (t_((1)/(2))="5770 years") respectively. The age of the artifact is

Half - life period of ""^(14)C is 5770 years . If and old wooden toy has 0.25% of activity of ""^(14)C Calculate the age of toy. Fresh wood has 2% activity of ""^(14)C .

A piece of wood form the ruins of an ancient building was found to have a C^(14) activity of 12 disintegrations per minute per gram of its carbon content. The C^(14) activity of the living wood is 16 disintegrations/minute/gram. How long ago did the trees, from which the wooden sample came, die? Given half-life of C^(14) is 5760 years.

A radio nuclide with half life T = 69.31 second emits beta -particles of average kinetic energy E = 11.25eV . At an instant concentration of beta -particles at distance, r = 2m from nuclide is n = 3 xx 10^(13) per m^(3) . (i) Calculate number of nuclei in the nuclide at that instant. (ii) If a small circular plate is placed at distance r from nuclide such that beta -particles strike the plate normally and come to rest, calculate pressure experienced by the plate due to collision of beta -particle. (Mass of beta -particle = 9 xx 10^(-31)kg ) (log_(e) 2 = 0.693)

A particle is revolving in a circle of radius 1 m with an angular speed of 12 rad/s. At t = 0, it was subjected to a constant angular acceleration alpha and its angular speed increased to (480/pi) rotation per minute (rpm) in 2 sec. Particle then continues to move with attained speed. Calculate (i) angular acceleration of the particle, (ii) tangential velocity of the particle as a function of time. (iii) acceleration of the particle at t = 0.5 second and at t = 3 second (iv) angular displacement at t = 3 second.

The activity of a nucleus is inversely proportional to its half of average life. Thus, shorter the half life of an element, greater is its radioactivity, i.e., greater the number of atomsd disintegrating per second. The relation between half life and average life is t_(1//2) = (0.693)/(lambda) = tau xx 0.693 or tau = 1.44 t_(1//2) The half-life periods of four isotopes are given 1 = 6.7 years, II = 8000 years, III = 5760 years, IV = 2.35 xx 10^(5) years. Which of these is most stable?

The activity of a nucleus is inversely proportional to its half of average life. Thus, shorter the half life of an element, greater is its radioactivity, i.e., greater the number of atomsd disintegrating per second. The relation between half life and average life is t_(1//2) = (0.693)/(lambda) = tau xx 0.693 or tau = 1.44 t_(1//2) The half life of a radioactive element is 10 years. What percentage of it will decay in 100 years?