Home
Class 12
PHYSICS
The equation of a plane progressive wave...

The equation of a plane progressive wave is `y=Asin(pit-(x)/(3))`. Find the value of A for which the wave speed is equal to the maximum particle speed.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A \) for which the wave speed is equal to the maximum particle speed in the given wave equation \( y = A \sin(\pi t - \frac{x}{3}) \). ### Step-by-Step Solution: 1. **Identify the wave equation parameters**: The wave equation is given as: \[ y = A \sin(\pi t - \frac{x}{3}) \] From this equation, we can identify: - The angular frequency \( \omega \) is the coefficient of \( t \), which is \( \pi \). - The wave number \( k \) is the coefficient of \( x \), which can be found from the term \( -\frac{x}{3} \). Thus, \( k = \frac{1}{3} \). 2. **Calculate the wave speed \( v \)**: The wave speed \( v \) is given by the formula: \[ v = \frac{\omega}{k} \] Substituting the values of \( \omega \) and \( k \): \[ v = \frac{\pi}{\frac{1}{3}} = \pi \times 3 = 3\pi \] 3. **Calculate the maximum particle speed \( v_{\text{max}} \)**: The maximum particle speed is given by: \[ v_{\text{max}} = A \cdot \omega \] Substituting the value of \( \omega \): \[ v_{\text{max}} = A \cdot \pi \] 4. **Set the wave speed equal to the maximum particle speed**: According to the problem, we need to find \( A \) such that: \[ v = v_{\text{max}} \] This gives us the equation: \[ 3\pi = A \cdot \pi \] 5. **Solve for \( A \)**: Dividing both sides by \( \pi \) (assuming \( \pi \neq 0 \)): \[ 3 = A \] Therefore, the value of \( A \) is: \[ A = 3 \] ### Final Answer: The value of \( A \) for which the wave speed is equal to the maximum particle speed is \( A = 3 \).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • WAVES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section-H) (Mutiple true-false type questions)|3 Videos
  • WAVES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section-I) (Subjective Type Questions)|8 Videos
  • WAVES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section-F) (Match the column)|2 Videos
  • WAVE OPTICS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section-J (Aakash Challengers question))|1 Videos
  • WORK, ENERGY AND POWER

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION - D)|13 Videos

Similar Questions

Explore conceptually related problems

(a) Taking equation of a palne progressive wave as y=alphasin.(2pi)/(gamma)(vt-x) . Write down the expression for the paticle velocity. Show that the particle veloity at a point = "wave velocity" xx "slope of the displacement curve at the point" .

The equation of a plane progressive wave is given by y=2sin(100pit-(pix)/(20)) where x and y are in cm and t is in second. The amplitude and the initial phase of the wave are respectively.

Knowledge Check

  • A transverse wave is represented by y=Asin(omegat-kx) . For what value of the wavelength is the wave velocity equal to the maximum particle velocity?

    A
    `(piA)/2`
    B
    `piA`
    C
    `2piA`
    D
    A
  • The equation of a progressive wave can be given by Y = 15 sin ( 660pit- 0.02pix ) cm. The frequency of the wave is

    A
    330 Hz
    B
    342 Hz
    C
    365 Hz
    D
    660 Hz
  • Equation of a plane progressive wave is given by y=0.6 sin 2pi(t-(x)/(2)). On reflection from a denser medium, its amplitude becomes 2//3 of the amplitude of the incident wave. The equation of the reflected wave is

    A
    `y=0.6sin2pi(t+x/2)`
    B
    `y=-0.4sin2pi(t+x/2)`
    C
    `y=0.4sin2pi(t+x/2)`
    D
    `y=-0.4sin2pi(t-x/2)`
  • Similar Questions

    Explore conceptually related problems

    The equation of a plane progressive wave is y=0.04sin4pi[t-(x)/(20)] . When it is reflected at a denser medium (medium with lesser wave velocity) at x=0, intensity of reflected wave is 81% of that of the incident wave. The equation of the relfected wave is:

    The equation of a plane progressive wave is given by y=2cos(100pit-(pix)/(20)) where x and y are in cm and t is in second. The wavelength of the wave is

    Equation of a plane progressive wave is given by y=0.6 sin 2pi(t-(x)/(2)). On reflection from a denser medium, its amplitude becomes 2//3 of the amplitude of the incident wave. The equation of the reflected wave is

    The equation of a simple harmonic progressive wave is given by y = A sin (100 pi t - 3x) . Find the distance between 2 particles having a phase difference of (pi)/(3) .

    A progressive wave is represented by y = 5 sin(100pit - 2pix) where x and y are in m and t is in s. The maximum particle velocity is