Home
Class 12
MATHS
Find the principal value of cot^(-1)(-sq...

Find the principal value of `cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(-sqrt3/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the principal value of the expression \( \cot^{-1}(-\sqrt{3}) + 2 \csc^{-1}(-2) + \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \cot^{-1}(-\sqrt{3}) \) The cotangent function is negative in the second and fourth quadrants. We know that: \[ \cot\left(\frac{\pi}{3}\right) = \sqrt{3} \] Thus, \[ \cot\left(\frac{2\pi}{3}\right) = -\sqrt{3} \] Since the principal value of \( \cot^{-1}(x) \) lies in the interval \( (0, \pi) \), we have: \[ \cot^{-1}(-\sqrt{3}) = \frac{2\pi}{3} \] ### Step 2: Evaluate \( 2 \csc^{-1}(-2) \) The cosecant function is negative in the third and fourth quadrants. We know that: \[ \csc\left(-\frac{\pi}{6}\right) = -2 \] Thus, \[ \csc^{-1}(-2) = -\frac{\pi}{6} \] Now, multiplying by 2 gives: \[ 2 \csc^{-1}(-2) = 2 \left(-\frac{\pi}{6}\right) = -\frac{\pi}{3} \] ### Step 3: Evaluate \( \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \) The cosine function is negative in the second quadrant. We know that: \[ \cos\left(\frac{5\pi}{6}\right) = -\frac{\sqrt{3}}{2} \] Thus, \[ \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6} \] ### Step 4: Combine the results Now, we can combine all the results: \[ \cot^{-1}(-\sqrt{3}) + 2 \csc^{-1}(-2) + \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{2\pi}{3} - \frac{\pi}{3} + \frac{5\pi}{6} \] Calculating this step by step: 1. Combine \( \frac{2\pi}{3} - \frac{\pi}{3} \): \[ \frac{2\pi}{3} - \frac{\pi}{3} = \frac{2\pi - \pi}{3} = \frac{\pi}{3} \] 2. Now add \( \frac{5\pi}{6} \): To add \( \frac{\pi}{3} \) and \( \frac{5\pi}{6} \), we need a common denominator. The least common multiple of 3 and 6 is 6. \[ \frac{\pi}{3} = \frac{2\pi}{6} \] Now we can add: \[ \frac{2\pi}{6} + \frac{5\pi}{6} = \frac{2\pi + 5\pi}{6} = \frac{7\pi}{6} \] ### Final Answer: Thus, the principal value is: \[ \cot^{-1}(-\sqrt{3}) + 2 \csc^{-1}(-2) + \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{7\pi}{6} \] ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the principal value of: cot^(-1)(sqrt(3))

Find the principal value of cos^(-1)(-sqrt3/2) .

Find the principal value of tan^(-1)(-sqrt(3))

Find the principal value of tan^(-1)(-1/sqrt3) .

Find the principal value of cos^(-1)(1/sqrt2) .

Find the principal value of sec^(-1)(sqrt2) .

Find the principal value of: tan^(-1)(-sqrt(3))

Find the principal value of cosec^(-1)(2/sqrt3) .

Find the principal value of cosec^(-1)(-2/sqrt3) .

Find the principal values of cot^(-1)sqrt(3) and cot^(-1)(-1)

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-TRY YOURSELF
  1. Find the principal value of cos^(-1)(1/2).

    Text Solution

    |

  2. Find the principal value of each of the following: (i) tan^(-1)(1/(s...

    Text Solution

    |

  3. The Principle value of cot ^(-1) (-sqrt3) is

    Text Solution

    |

  4. Find the principal values of sec^(-1)(2/(sqrt(3))) and sec^(-1)(-2)

    Text Solution

    |

  5. Find the principal value of cosec^(-1)(-2/sqrt3).

    Text Solution

    |

  6. Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^...

    Text Solution

    |

  7. Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^...

    Text Solution

    |

  8. Find the principal value of cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(...

    Text Solution

    |

  9. Find the principal value of sin^(-1)(-1/sqrt2)-2tan^(-1)(-sqrt3)+cos^(...

    Text Solution

    |

  10. Find tan^(-1)(3)+cot^(-1)(-1/3)+sec^(-1)2.

    Text Solution

    |

  11. If tan^(-1)x+2cot^(-1)x=(5pi)/6, then find x.

    Text Solution

    |

  12. Evaluate tan(cosec^(-1)(5/3)).

    Text Solution

    |

  13. Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2)...

    Text Solution

    |

  14. Prove that tan^(-1)(1/70)-tan^(-1)(1/99)=tan^(-1)(1/239)

    Text Solution

    |

  15. Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi.

    Text Solution

    |

  16. Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

    Text Solution

    |

  17. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  18. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  19. Solve tan^(-1)""[(a cos x -b sinx)/(b cosx+a sinx)] , if ""(a)/(b)tan...

    Text Solution

    |

  20. Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)

    Text Solution

    |