Home
Class 12
MATHS
Find tan^(-1)(3)+cot^(-1)(-1/3)+sec^(-1...

Find `tan^(-1)(3)+cot^(-1)(-1/3)+sec^(-1)2`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \tan^{-1}(3) + \cot^{-1}(-\frac{1}{3}) + \sec^{-1}(2) \), we will break it down step by step. ### Step 1: Rewrite \( \cot^{-1}(-\frac{1}{3}) \) We know that: \[ \cot^{-1}(x) = \pi - \tan^{-1}(x) \quad \text{for } x < 0 \] Since \(-\frac{1}{3} < 0\), we can write: \[ \cot^{-1}(-\frac{1}{3}) = \pi - \tan^{-1}(-\frac{1}{3}) \] ### Step 2: Simplify \( \tan^{-1}(-\frac{1}{3}) \) Using the property of the inverse tangent function: \[ \tan^{-1}(-x) = -\tan^{-1}(x) \] we have: \[ \tan^{-1}(-\frac{1}{3}) = -\tan^{-1}(\frac{1}{3}) \] Thus, \[ \cot^{-1}(-\frac{1}{3}) = \pi + \tan^{-1}(\frac{1}{3}) \] ### Step 3: Substitute back into the expression Now we substitute this back into the original expression: \[ \tan^{-1}(3) + \cot^{-1}(-\frac{1}{3}) + \sec^{-1}(2) = \tan^{-1}(3) + \left(\pi + \tan^{-1}(\frac{1}{3})\right) + \sec^{-1}(2) \] This simplifies to: \[ \tan^{-1}(3) + \tan^{-1}(\frac{1}{3}) + \pi + \sec^{-1}(2) \] ### Step 4: Use the property of \( \tan^{-1} \) We know that: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad \text{if } xy < 1 \] In our case, \( x = 3 \) and \( y = \frac{1}{3} \): \[ xy = 3 \cdot \frac{1}{3} = 1 \quad \text{(not valid for this property)} \] Instead, we can directly evaluate: \[ \tan^{-1}(3) + \tan^{-1}(\frac{1}{3}) = \frac{\pi}{4} \quad \text{(since } \tan(\frac{\pi}{4}) = 1\text{)} \] ### Step 5: Substitute back into the expression Now we substitute this back: \[ \frac{\pi}{4} + \pi + \sec^{-1}(2) \] ### Step 6: Evaluate \( \sec^{-1}(2) \) We know that: \[ \sec^{-1}(x) = \frac{\pi}{3} \quad \text{(since } \sec(\frac{\pi}{3}) = 2\text{)} \] ### Step 7: Combine all parts Now we can combine everything: \[ \frac{\pi}{4} + \pi + \frac{\pi}{3} \] To add these, we need a common denominator. The least common multiple of 4, 1, and 3 is 12: \[ \frac{\pi}{4} = \frac{3\pi}{12}, \quad \pi = \frac{12\pi}{12}, \quad \frac{\pi}{3} = \frac{4\pi}{12} \] Adding these gives: \[ \frac{3\pi}{12} + \frac{12\pi}{12} + \frac{4\pi}{12} = \frac{19\pi}{12} \] ### Final Answer Thus, the final answer is: \[ \frac{19\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

For the principal values, evaluate the following: (i) cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+s e c ^(-1)(2) (ii) cot^(-1)(-sqrt(3))+tan^(-1)(1)+sec^(-1)(2/(sqrt(3)))

Evaluate the following expression: tan [cos^(-1)(3/4)+sin^(-1)(3/4)-sec^(-1)3]

For the principal values, evaluate the following: (1) cot^(-1)(-1)+cos e c^(-1)(-sqrt(2))+s e c ^(-1)(2) (2) cot^(-1)(-sqrt(3))+tan^(-1)(1)+sec^(-1)(2/(sqrt(3)))

Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^(-1)(2)

For the principal values, evaluate the following: cot^(-1)(-1)+cos e c^(-1)(-sqrt(2))+s e c s^(-1)(2) cot^(-1)(-sqrt(3))+tan^(-1)(1)sec^(-1)(2/(sqrt(3)))

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

2"tan"(tan^(-1)(x)+tan^(-1)(x^3)),w h e r ex in R-{-1,1}, is equal to (2x)/(1-x^2) t(2tan^(-1)x) tan(cot^(-1)(-x)-cot^(-1)(x)) "tan"(2cot^(-1)x)

Prove that: cos e c(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(3-a^2), where a in [0,1]

Prove that: cos e c(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(3-a^2), where a in [0,1]

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-TRY YOURSELF
  1. Find the principal value of cos^(-1)(1/2).

    Text Solution

    |

  2. Find the principal value of each of the following: (i) tan^(-1)(1/(s...

    Text Solution

    |

  3. The Principle value of cot ^(-1) (-sqrt3) is

    Text Solution

    |

  4. Find the principal values of sec^(-1)(2/(sqrt(3))) and sec^(-1)(-2)

    Text Solution

    |

  5. Find the principal value of cosec^(-1)(-2/sqrt3).

    Text Solution

    |

  6. Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^...

    Text Solution

    |

  7. Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^...

    Text Solution

    |

  8. Find the principal value of cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(...

    Text Solution

    |

  9. Find the principal value of sin^(-1)(-1/sqrt2)-2tan^(-1)(-sqrt3)+cos^(...

    Text Solution

    |

  10. Find tan^(-1)(3)+cot^(-1)(-1/3)+sec^(-1)2.

    Text Solution

    |

  11. If tan^(-1)x+2cot^(-1)x=(5pi)/6, then find x.

    Text Solution

    |

  12. Evaluate tan(cosec^(-1)(5/3)).

    Text Solution

    |

  13. Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2)...

    Text Solution

    |

  14. Prove that tan^(-1)(1/70)-tan^(-1)(1/99)=tan^(-1)(1/239)

    Text Solution

    |

  15. Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi.

    Text Solution

    |

  16. Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

    Text Solution

    |

  17. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  18. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  19. Solve tan^(-1)""[(a cos x -b sinx)/(b cosx+a sinx)] , if ""(a)/(b)tan...

    Text Solution

    |

  20. Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)

    Text Solution

    |