Home
Class 12
MATHS
Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)...

Evaluate `2tan^(-1)(1/2)+tan^(-1)(1/4)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( 2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{4}\right) \), we will follow these steps: ### Step 1: Use the double angle formula for tangent inverse We can use the formula for \( 2\tan^{-1}(x) \): \[ 2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] In our case, \( x = \frac{1}{2} \). ### Step 2: Substitute \( x \) into the formula Substituting \( x = \frac{1}{2} \) into the formula gives: \[ 2\tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{2 \cdot \frac{1}{2}}{1 - \left(\frac{1}{2}\right)^2}\right) \] ### Step 3: Simplify the expression Calculating the numerator and denominator: - Numerator: \( 2 \cdot \frac{1}{2} = 1 \) - Denominator: \( 1 - \frac{1}{4} = \frac{3}{4} \) Thus, we have: \[ 2\tan^{-1}\left(\frac{1}{2}\right) = \tan^{-1}\left(\frac{1}{\frac{3}{4}}\right) = \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 4: Combine with the other term Now, we substitute back into the original expression: \[ 2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{4}\right) = \tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{1}{4}\right) \] ### Step 5: Use the addition formula for tangent inverse We can use the formula for the sum of two inverse tangents: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \] Here, \( x = \frac{4}{3} \) and \( y = \frac{1}{4} \). ### Step 6: Substitute into the addition formula Substituting \( x \) and \( y \): \[ \tan^{-1}\left(\frac{\frac{4}{3} + \frac{1}{4}}{1 - \frac{4}{3} \cdot \frac{1}{4}}\right) \] ### Step 7: Simplify the numerator and denominator Calculating the numerator: \[ \frac{4}{3} + \frac{1}{4} = \frac{16 + 3}{12} = \frac{19}{12} \] Calculating the denominator: \[ 1 - \frac{4}{3} \cdot \frac{1}{4} = 1 - 1 = 0 \] This indicates that we need to be careful with the calculation. Let's recalculate the denominator correctly: \[ 1 - \frac{4}{12} = \frac{3}{12} = \frac{1}{4} \] ### Step 8: Final expression Now we substitute back: \[ \tan^{-1}\left(\frac{\frac{19}{12}}{\frac{1}{4}}\right) = \tan^{-1}\left(\frac{19 \cdot 4}{12}\right) = \tan^{-1}\left(\frac{76}{12}\right) = \tan^{-1}\left(\frac{19}{3}\right) \] Thus, the final answer is: \[ \tan^{-1}\left(\frac{19}{3}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|36 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Evaluate tan^(-1).(1)/(2)+ tan^(-1).(1)/(3) .

Evaluate: tan^(-1)(1)+tan^(-1)(0),

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)((31)/(17))

Evaluate: tan(2tan^(-1)(1/5))

Evaluate : tan[2tan^(-1)(1/2)-cot^(-1)3]

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-TRY YOURSELF
  1. Find the principal value of cos^(-1)(1/2).

    Text Solution

    |

  2. Find the principal value of each of the following: (i) tan^(-1)(1/(s...

    Text Solution

    |

  3. The Principle value of cot ^(-1) (-sqrt3) is

    Text Solution

    |

  4. Find the principal values of sec^(-1)(2/(sqrt(3))) and sec^(-1)(-2)

    Text Solution

    |

  5. Find the principal value of cosec^(-1)(-2/sqrt3).

    Text Solution

    |

  6. Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^...

    Text Solution

    |

  7. Find the principal value of sin^(-1)(-1/sqrt2)+tan^(-1)(-1/sqrt3)+sec^...

    Text Solution

    |

  8. Find the principal value of cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(...

    Text Solution

    |

  9. Find the principal value of sin^(-1)(-1/sqrt2)-2tan^(-1)(-sqrt3)+cos^(...

    Text Solution

    |

  10. Find tan^(-1)(3)+cot^(-1)(-1/3)+sec^(-1)2.

    Text Solution

    |

  11. If tan^(-1)x+2cot^(-1)x=(5pi)/6, then find x.

    Text Solution

    |

  12. Evaluate tan(cosec^(-1)(5/3)).

    Text Solution

    |

  13. Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2)...

    Text Solution

    |

  14. Prove that tan^(-1)(1/70)-tan^(-1)(1/99)=tan^(-1)(1/239)

    Text Solution

    |

  15. Prove that cot^(-1)(13)+cot^(-1)(21)+cot^(-1)(-8)=pi.

    Text Solution

    |

  16. Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

    Text Solution

    |

  17. Find the value of tan { 1/2 sin^(-1) ((2x)/(1+x^(2))) + 1/2 cos^(-1...

    Text Solution

    |

  18. Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if ...

    Text Solution

    |

  19. Solve tan^(-1)""[(a cos x -b sinx)/(b cosx+a sinx)] , if ""(a)/(b)tan...

    Text Solution

    |

  20. Evaluate 2tan^(-1)(1/2)+tan^(-1)(1/4)

    Text Solution

    |