Home
Class 12
MATHS
If x1,x2,x3,x4,x5,x6 all are independent...

If `x_1,x_2,x_3,x_4,x_5,x_6` all are independent then the maximum and minimum values of `[sin^(-1)x_1]+[cos^(-1)x_2]+[tan^(-1)x_3]+[cot^(-1)x_4]+[sec^(-1)x_5]+[cosec^(-1)x_6]`, where [] represents greatest integer function, respectively are

A

9,3

B

11,5

C

12,-6

D

12,-3

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the expression \[ [\sin^{-1} x_1] + [\cos^{-1} x_2] + [\tan^{-1} x_3] + [\cot^{-1} x_4] + [\sec^{-1} x_5] + [\csc^{-1} x_6] \] where \([]\) denotes the greatest integer function, we will analyze the ranges of each of the inverse trigonometric functions involved. ### Step 1: Determine the ranges of each function 1. **Range of \(\sin^{-1} x\)**: The range is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). 2. **Range of \(\cos^{-1} x\)**: The range is \([0, \pi]\). 3. **Range of \(\tan^{-1} x\)**: The range is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). 4. **Range of \(\cot^{-1} x\)**: The range is \((0, \pi)\). 5. **Range of \(\sec^{-1} x\)**: The range is \([0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]\). 6. **Range of \(\csc^{-1} x\)**: The range is \([- \frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]\). ### Step 2: Calculate the maximum values To find the maximum value of the entire expression, we take the maximum of each individual function: - Maximum of \([\sin^{-1} x_1]\) is \([\frac{\pi}{2}] = 1\). - Maximum of \([\cos^{-1} x_2]\) is \([\pi] = 3\). - Maximum of \([\tan^{-1} x_3]\) is \([\frac{\pi}{2}] = 1\). - Maximum of \([\cot^{-1} x_4]\) is \([\pi] = 3\). - Maximum of \([\sec^{-1} x_5]\) is \([\pi] = 3\). - Maximum of \([\csc^{-1} x_6]\) is \([\frac{\pi}{2}] = 1\). Adding these maximum values together gives: \[ 1 + 3 + 1 + 3 + 3 + 1 = 12 \] ### Step 3: Calculate the minimum values To find the minimum value of the entire expression, we take the minimum of each individual function: - Minimum of \([\sin^{-1} x_1]\) is \([- \frac{\pi}{2}] = -2\). - Minimum of \([\cos^{-1} x_2]\) is \([0] = 0\). - Minimum of \([\tan^{-1} x_3]\) is \([- \frac{\pi}{2}] = -2\). - Minimum of \([\cot^{-1} x_4]\) is \([0] = 0\). - Minimum of \([\sec^{-1} x_5]\) is \([0] = 0\). - Minimum of \([\csc^{-1} x_6]\) is \([- \frac{\pi}{2}] = -2\). Adding these minimum values together gives: \[ -2 + 0 - 2 + 0 + 0 - 2 = -6 \] ### Final Results Thus, the maximum value of the expression is **12** and the minimum value is **-6**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

Find x satisfying [tan^(-1)x]+[cos^(-1)x]=2, where [] represents the greatest integer function.

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Range of f(x)=sin^(-1)[x-1]+2cos^(-1)[x-2] ([.] denotes greatest integer function)

Let f (x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest integer function, then the range of f

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

If [sin^-1 (cos^-1(sin^-1 (tan^-1 x)))]=1 , where [*] denotes the greatest integer function, then x in

If f(x) = (e^([x] + |x|) -3)/([x] + |x|+ 1) , then: (where [.] represents greatest integer function)

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. The domain and range of f(x) = sin^1x + cos^-1 x +tan^-1x + cot^-1x +...

    Text Solution

    |

  2. The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x r...

    Text Solution

    |

  3. If x1,x2,x3,x4,x5,x6 all are independent then the maximum and minimum ...

    Text Solution

    |

  4. Select the wrong option

    Text Solution

    |

  5. If the number of solutions of sin^-1 x+|x|=1 cos^-1 x+|x|=1, tan^-1 x...

    Text Solution

    |

  6. Let xi in [-1,1]" for "i=1,2,3,…24, such that sin^(-1)x1+sin^(-1)x2+…+...

    Text Solution

    |

  7. sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+t...

    Text Solution

    |

  8. Let [.] represents the greatest integer function and [cos^(-1)sin^(-1)...

    Text Solution

    |

  9. The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2...

    Text Solution

    |

  10. How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

    Text Solution

    |

  11. Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2).

    Text Solution

    |

  12. about to only mathematics

    Text Solution

    |

  13. Let cos^-1 (x/2)+cos^-1 (y/3)=theta and denote by f(x,y,theta)=0 the r...

    Text Solution

    |

  14. If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, then 1/(xy)+1/(yz)+1/(zx)=

    Text Solution

    |

  15. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  16. If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)...

    Text Solution

    |

  17. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  18. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  19. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  20. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |