Home
Class 12
MATHS
If the number of solutions of sin^-1 x+...

If the number of solutions of `sin^-1 x+|x|=1 cos^-1 x+|x|=1, tan^-1 x+|x|=1, cot^-1x+|x|=1, sec^-1 x+|x|=1 and cosec^-1 x+|x|=1` are `n_1,n_2,n_3,n_4,n_5,n_6` respectively, then the value of `n_1+n_2+n_3+n_4+n_5+n_6` is

A

6

B

7

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equations involving the inverse trigonometric functions and the absolute value function. We will find the number of solutions for each equation one by one. ### Step 1: Analyze \( \sin^{-1} x + |x| = 1 \) 1. The domain of \( \sin^{-1} x \) is \( x \in [-1, 1] \). 2. Consider two cases for \( |x| \): - Case 1: \( x \geq 0 \) → \( |x| = x \) \[ \sin^{-1} x + x = 1 \] - Case 2: \( x < 0 \) → \( |x| = -x \) \[ \sin^{-1} x - x = 1 \] **Finding solutions:** - For Case 1, \( \sin^{-1} x + x = 1 \) can be solved graphically or numerically within the interval \( [0, 1] \). - For Case 2, \( \sin^{-1} x - x = 1 \) is valid in the interval \( [-1, 0) \). After solving both cases, we find that there are **2 solutions** for \( n_1 \). ### Step 2: Analyze \( \cos^{-1} x + |x| = 1 \) 1. The domain of \( \cos^{-1} x \) is \( x \in [-1, 1] \). 2. Again, consider two cases for \( |x| \): - Case 1: \( x \geq 0 \) → \( |x| = x \) \[ \cos^{-1} x + x = 1 \] - Case 2: \( x < 0 \) → \( |x| = -x \) \[ \cos^{-1} x - x = 1 \] **Finding solutions:** - For Case 1, \( \cos^{-1} x + x = 1 \) has **1 solution** in \( [0, 1] \). - For Case 2, \( \cos^{-1} x - x = 1 \) has **1 solution** in \( [-1, 0) \). Thus, \( n_2 = 2 \). ### Step 3: Analyze \( \tan^{-1} x + |x| = 1 \) 1. The function \( \tan^{-1} x \) is defined for all \( x \). 2. Again, consider two cases for \( |x| \): - Case 1: \( x \geq 0 \) → \( |x| = x \) \[ \tan^{-1} x + x = 1 \] - Case 2: \( x < 0 \) → \( |x| = -x \) \[ \tan^{-1} x - x = 1 \] **Finding solutions:** - Both cases can be solved graphically or numerically. Each case yields **1 solution**. Thus, \( n_3 = 2 \). ### Step 4: Analyze \( \cot^{-1} x + |x| = 1 \) 1. The function \( \cot^{-1} x \) is defined for all \( x \). 2. Consider two cases for \( |x| \): - Case 1: \( x \geq 0 \) → \( |x| = x \) \[ \cot^{-1} x + x = 1 \] - Case 2: \( x < 0 \) → \( |x| = -x \) \[ \cot^{-1} x - x = 1 \] **Finding solutions:** - Each case yields **1 solution**. Thus, \( n_4 = 2 \). ### Step 5: Analyze \( \sec^{-1} x + |x| = 1 \) 1. The domain of \( \sec^{-1} x \) is \( |x| \geq 1 \). 2. Consider two cases for \( |x| \): - Case 1: \( x \geq 1 \) → \( |x| = x \) \[ \sec^{-1} x + x = 1 \] - Case 2: \( x < -1 \) → \( |x| = -x \) \[ \sec^{-1} x - x = 1 \] **Finding solutions:** - Each case yields **1 solution**. Thus, \( n_5 = 2 \). ### Step 6: Analyze \( \csc^{-1} x + |x| = 1 \) 1. The domain of \( \csc^{-1} x \) is \( |x| \geq 1 \). 2. Consider two cases for \( |x| \): - Case 1: \( x \geq 1 \) → \( |x| = x \) \[ \csc^{-1} x + x = 1 \] - Case 2: \( x < -1 \) → \( |x| = -x \) \[ \csc^{-1} x - x = 1 \] **Finding solutions:** - Each case yields **1 solution**. Thus, \( n_6 = 2 \). ### Final Calculation Now we sum the number of solutions: \[ n_1 + n_2 + n_3 + n_4 + n_5 + n_6 = 2 + 2 + 2 + 2 + 2 + 2 = 12 \] ### Final Answer The value of \( n_1 + n_2 + n_3 + n_4 + n_5 + n_6 \) is **12**.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If A = {x : x = 6^n - 5n - 1, n in N} and B = {x : x = 25(n - 1), n in N} , then

Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

If x^2-x+1=0 then the value of sum_[n=1]^[5][x^n+1/x^n]^2 is:

Prove that: sin (n + 1) x sin (n + 2)x + cos (n + 1) x cos (n + 2) x = cos x

f(x)={(1-x^n)/(1-x),\ \ \( x!=1, (n-1) at x=1, n in N at x=1

If A and B are the coefficients of x^n in the expansion (1 + x)^(2n) and (1 + x)^(2n-1) respectively, then

If A and B are the coefficients of x^n in the expansion (1 + x)^(2n) and (1 + x)^(2n-1) respectively, then

If A and B are the coefficients of x^n in the expansion (1 + x)^(2n) and (1 + x)^(2n-1) respectively, then A/B is

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

If a\ a n d\ b are the coefficients of x^n in the expansions of (1+x)^(2n) and (1+x)^(2n-1) respectively, find a/b .

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If x1,x2,x3,x4,x5,x6 all are independent then the maximum and minimum ...

    Text Solution

    |

  2. Select the wrong option

    Text Solution

    |

  3. If the number of solutions of sin^-1 x+|x|=1 cos^-1 x+|x|=1, tan^-1 x...

    Text Solution

    |

  4. Let xi in [-1,1]" for "i=1,2,3,…24, such that sin^(-1)x1+sin^(-1)x2+…+...

    Text Solution

    |

  5. sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+t...

    Text Solution

    |

  6. Let [.] represents the greatest integer function and [cos^(-1)sin^(-1)...

    Text Solution

    |

  7. The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2...

    Text Solution

    |

  8. How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

    Text Solution

    |

  9. Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2).

    Text Solution

    |

  10. about to only mathematics

    Text Solution

    |

  11. Let cos^-1 (x/2)+cos^-1 (y/3)=theta and denote by f(x,y,theta)=0 the r...

    Text Solution

    |

  12. If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, then 1/(xy)+1/(yz)+1/(zx)=

    Text Solution

    |

  13. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  14. If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)...

    Text Solution

    |

  15. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  16. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  17. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  18. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  19. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  20. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |