Home
Class 12
MATHS
sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-...

`sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+tan^(-1)(-1)+sec^(-1)(sqrt2)` equals

A

`(9pi)/4`

B

`(19pi)/12`

C

`(3pi)/2`

D

`pi/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1}\left(-\frac{1}{2}\right) + \cos^{-1}\left(-\frac{1}{2}\right) + \cot^{-1}\left(-\sqrt{3}\right) + \csc^{-1}\left(\sqrt{2}\right) + \tan^{-1}\left(-1\right) + \sec^{-1}\left(\sqrt{2}\right) \), we will use some properties of inverse trigonometric functions. ### Step-by-step Solution: 1. **Evaluate \( \sin^{-1}\left(-\frac{1}{2}\right) \)**: \[ \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \] (Since \( \sin\left(-\frac{\pi}{6}\right) = -\frac{1}{2} \)) 2. **Evaluate \( \cos^{-1}\left(-\frac{1}{2}\right) \)**: \[ \cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3} \] (Since \( \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \)) 3. **Evaluate \( \cot^{-1}\left(-\sqrt{3}\right) \)**: \[ \cot^{-1}\left(-\sqrt{3}\right) = \pi - \cot^{-1}(\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \] (Since \( \cot\left(\frac{\pi}{6}\right) = \sqrt{3} \)) 4. **Evaluate \( \csc^{-1}\left(\sqrt{2}\right) \)**: \[ \csc^{-1}\left(\sqrt{2}\right) = \frac{\pi}{4} \] (Since \( \csc\left(\frac{\pi}{4}\right) = \sqrt{2} \)) 5. **Evaluate \( \tan^{-1}\left(-1\right) \)**: \[ \tan^{-1}\left(-1\right) = -\frac{\pi}{4} \] (Since \( \tan\left(-\frac{\pi}{4}\right) = -1 \)) 6. **Evaluate \( \sec^{-1}\left(\sqrt{2}\right) \)**: \[ \sec^{-1}\left(\sqrt{2}\right) = \frac{\pi}{4} \] (Since \( \sec\left(\frac{\pi}{4}\right) = \sqrt{2} \)) ### Combine all the results: Now we can combine all the evaluated values: \[ -\frac{\pi}{6} + \frac{2\pi}{3} + \frac{5\pi}{6} + \frac{\pi}{4} - \frac{\pi}{4} + \frac{\pi}{4} \] ### Simplifying the expression: 1. Combine \( -\frac{\pi}{6} + \frac{5\pi}{6} \): \[ -\frac{\pi}{6} + \frac{5\pi}{6} = \frac{4\pi}{6} = \frac{2\pi}{3} \] 2. Now add \( \frac{2\pi}{3} + \frac{2\pi}{3} \): \[ \frac{2\pi}{3} + \frac{2\pi}{3} = \frac{4\pi}{3} \] 3. Finally, add \( \frac{4\pi}{3} + \frac{\pi}{4} - \frac{\pi}{4} \): \[ \frac{4\pi}{3} + 0 = \frac{4\pi}{3} \] ### Final Result: Thus, the final result is: \[ \frac{4\pi}{3} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

The value of sin ^(-1) (-(1)/(sqrt2)) + cos ^(-1) (-(1)/(2)) - tan ^(-1) (-sqrt3) + cot ^(-1) (-(1)/(sqrt3)) is

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

For the principal values, evaluate the following: (i) cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+s e c ^(-1)(2) (ii) cot^(-1)(-sqrt(3))+tan^(-1)(1)+sec^(-1)(2/(sqrt(3)))

For the principal values, evaluate the following: cot^(-1)(-1)+cos e c^(-1)(-sqrt(2))+s e c s^(-1)(2) cot^(-1)(-sqrt(3))+tan^(-1)(1)sec^(-1)(2/(sqrt(3)))

For the principal values, evaluate the following: (1) cot^(-1)(-1)+cos e c^(-1)(-sqrt(2))+s e c ^(-1)(2) (2) cot^(-1)(-sqrt(3))+tan^(-1)(1)+sec^(-1)(2/(sqrt(3)))

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

Find the principal values of the following : (i) sin^(-1)(sqrt(-3/2)) (ii) cot^(-1)(-sqrt(3)) (iii) cos^(-1)(-1(1)/(2)) (iv) sec^(-1)(-(2)/sqrt(3)) (v) tan^(-1)(-1) (vi) cosec ^(-1)(-1) .

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

The value of tan^(-1)(sqrt3)+cos^(-1)((-1)/sqrt2)+sec^(-1)((-2)/sqrt3) is

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. If the number of solutions of sin^-1 x+|x|=1 cos^-1 x+|x|=1, tan^-1 x...

    Text Solution

    |

  2. Let xi in [-1,1]" for "i=1,2,3,…24, such that sin^(-1)x1+sin^(-1)x2+…+...

    Text Solution

    |

  3. sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+t...

    Text Solution

    |

  4. Let [.] represents the greatest integer function and [cos^(-1)sin^(-1)...

    Text Solution

    |

  5. The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2...

    Text Solution

    |

  6. How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

    Text Solution

    |

  7. Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2).

    Text Solution

    |

  8. about to only mathematics

    Text Solution

    |

  9. Let cos^-1 (x/2)+cos^-1 (y/3)=theta and denote by f(x,y,theta)=0 the r...

    Text Solution

    |

  10. If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, then 1/(xy)+1/(yz)+1/(zx)=

    Text Solution

    |

  11. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  12. If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)...

    Text Solution

    |

  13. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  14. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  15. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  16. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  17. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  18. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  19. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  20. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |