Home
Class 12
MATHS
Let [.] represents the greatest integer ...

Let [.] represents the greatest integer function and `[cos^(-1)sin^(-1)tan^(-1)x]=1` then 'x' lies in the intervel.

A

`[sintancos2,tansincos1]`

B

`[tansincos2,tansincos1]`

C

`[tansincos1, tan sincos2]`

D

`(tansincos2,tansincos1]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression \([ \cos^{-1}(\sin^{-1}(\tan^{-1}(x))) ] = 1\) and determine the interval in which \(x\) lies. ### Step-by-Step Solution: 1. **Understanding the Greatest Integer Function**: The greatest integer function \([y]\) gives the largest integer less than or equal to \(y\). For \([y] = 1\), it implies that \(1 \leq y < 2\). 2. **Setting Up the Inequality**: From the problem, we have: \[ 1 \leq \cos^{-1}(\sin^{-1}(\tan^{-1}(x))) < 2 \] 3. **Applying the Cosine Function**: Since \(\cos^{-1}(y)\) is a decreasing function, we can apply the cosine to all parts of the inequality: \[ \cos(2) < \sin^{-1}(\tan^{-1}(x)) \leq \cos(1) \] 4. **Understanding the Sine Function**: The sine function is increasing, so we can apply the sine to the entire inequality: \[ \sin(\cos(2)) < \tan^{-1}(x) \leq \sin(\cos(1)) \] 5. **Applying the Tangent Function**: The tangent function is also increasing, so we can apply the tangent to the entire inequality: \[ \tan(\sin(\cos(2))) < x \leq \tan(\sin(\cos(1))) \] 6. **Finding the Interval for \(x\)**: Now we need to compute the values of \(\tan(\sin(\cos(2)))\) and \(\tan(\sin(\cos(1)))\) to find the interval for \(x\). 7. **Calculating Values**: - Compute \(\cos(2)\) and \(\cos(1)\). - Compute \(\sin(\cos(2))\) and \(\sin(\cos(1))\). - Finally, compute \(\tan(\sin(\cos(2)))\) and \(\tan(\sin(\cos(1)))\). 8. **Conclusion**: The interval for \(x\) will be: \[ \tan(\sin(\cos(2))) < x \leq \tan(\sin(\cos(1))) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Let [.] represent the greatest integer function and f (x)=[tan^2 x] then :

Let f(x) = [x] and [] represents the greatest integer function, then

Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) is

The greatest value of f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo], is (where [.] represents the greatest integer function). -1 (b) 1 (c) 0 (d) none of these

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

If [.] denotes the greatest integer function , then lim_(xrarr0) sin[-sec^2x]/(1+[cos x ]) is equal to

STATEMENT -1 : If [sin^(-1)x] gt [cos^(-1)x] ,where [] represents the greatest integer function, then x in [sin1,1] is and STATEMENT -2 : cos^(-1)(cosx)=x,x in [-1,1]

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Let xi in [-1,1]" for "i=1,2,3,…24, such that sin^(-1)x1+sin^(-1)x2+…+...

    Text Solution

    |

  2. sin^(-1)(-(1/2))+cos^(-1)(-(1/2))+cot^(-1)(-sqrt3)+cosec^(-1)(sqrt2)+t...

    Text Solution

    |

  3. Let [.] represents the greatest integer function and [cos^(-1)sin^(-1)...

    Text Solution

    |

  4. The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2...

    Text Solution

    |

  5. How many solutions does the equation 5 tan^-1 x+3 cot^-1 x=2pi have ?

    Text Solution

    |

  6. Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2).

    Text Solution

    |

  7. about to only mathematics

    Text Solution

    |

  8. Let cos^-1 (x/2)+cos^-1 (y/3)=theta and denote by f(x,y,theta)=0 the r...

    Text Solution

    |

  9. If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, then 1/(xy)+1/(yz)+1/(zx)=

    Text Solution

    |

  10. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  11. If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)...

    Text Solution

    |

  12. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  13. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  14. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  15. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  16. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  17. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  18. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  19. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  20. The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|,is

    Text Solution

    |