Home
Class 12
MATHS
Let cos^-1 (x/2)+cos^-1 (y/3)=theta and ...

Let `cos^-1 (x/2)+cos^-1 (y/3)=theta` and denote by `f(x,y,theta)=0` the rational integeral expression in `x and y.` Then for `theta=pi/2` the locus represented by `f(x,y,pi/2)=0` is (A) an ellipse (B) parabola (C) hyperbola (D) pair of lines

A

An ellipse

B

A parabola

C

A hyperbola

D

A pair of line

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: \[ \cos^{-1}\left(\frac{x}{2}\right) + \cos^{-1}\left(\frac{y}{3}\right) = \theta \] We need to find the locus represented by \( f(x, y, \frac{\pi}{2}) = 0 \). ### Step 1: Set up the equations Let: \[ \cos^{-1}\left(\frac{x}{2}\right) = \alpha \quad \text{and} \quad \cos^{-1}\left(\frac{y}{3}\right) = \beta \] Thus, we can rewrite the equation as: \[ \alpha + \beta = \theta \] ### Step 2: Express \( x \) and \( y \) in terms of \( \alpha \) and \( \beta \) From the definitions of \( \alpha \) and \( \beta \), we have: \[ \frac{x}{2} = \cos(\alpha) \quad \Rightarrow \quad x = 2\cos(\alpha) \] \[ \frac{y}{3} = \cos(\beta) \quad \Rightarrow \quad y = 3\cos(\beta) \] ### Step 3: Use the cosine addition formula Using the cosine addition formula, we have: \[ \cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] Substituting \( \theta \) into the equation, we get: \[ \cos(\theta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \] ### Step 4: Substitute \( \cos(\alpha) \) and \( \cos(\beta) \) Substituting the expressions for \( x \) and \( y \): \[ \cos(\alpha) = \frac{x}{2}, \quad \cos(\beta) = \frac{y}{3} \] Thus, we have: \[ \cos(\theta) = \left(\frac{x}{2}\right)\left(\frac{y}{3}\right) - \sin(\alpha)\sin(\beta) \] ### Step 5: Find \( \sin(\alpha) \) and \( \sin(\beta) \) Using the Pythagorean identity: \[ \sin(\alpha) = \sqrt{1 - \cos^2(\alpha)} = \sqrt{1 - \left(\frac{x}{2}\right)^2} = \frac{\sqrt{4 - x^2}}{2} \] \[ \sin(\beta) = \sqrt{1 - \cos^2(\beta)} = \sqrt{1 - \left(\frac{y}{3}\right)^2} = \frac{\sqrt{9 - y^2}}{3} \] ### Step 6: Substitute back into the equation Substituting \( \sin(\alpha) \) and \( \sin(\beta) \) into the equation: \[ \cos(\theta) = \frac{xy}{6} - \left(\frac{\sqrt{4 - x^2}}{2}\right)\left(\frac{\sqrt{9 - y^2}}{3}\right) \] ### Step 7: Set \( \theta = \frac{\pi}{2} \) For \( \theta = \frac{\pi}{2} \), we know that \( \cos\left(\frac{\pi}{2}\right) = 0 \): \[ 0 = \frac{xy}{6} - \frac{\sqrt{4 - x^2}\sqrt{9 - y^2}}{6} \] ### Step 8: Rearranging the equation This leads to: \[ xy = \sqrt{(4 - x^2)(9 - y^2)} \] ### Step 9: Square both sides Squaring both sides gives: \[ x^2y^2 = (4 - x^2)(9 - y^2) \] Expanding the right side: \[ x^2y^2 = 36 - 9x^2 - 4y^2 + x^2y^2 \] Cancelling \( x^2y^2 \) from both sides: \[ 0 = 36 - 9x^2 - 4y^2 \] Rearranging gives: \[ 9x^2 + 4y^2 = 36 \] ### Step 10: Divide by 36 Dividing the entire equation by 36: \[ \frac{x^2}{4} + \frac{y^2}{9} = 1 \] ### Conclusion This is the standard form of the equation of an ellipse. Thus, the locus represented by \( f(x, y, \frac{\pi}{2}) = 0 \) is an ellipse. ### Final Answer The correct option is (A) an ellipse.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

The equation x^(2) - 2xy +y^(2) +3x +2 = 0 represents (a) a parabola (b) an ellipse (c) a hyperbola (d) a circle

If "cos"^(-1) x/(2)+"cos"^(-1) y/(3)=theta , then prove that 9x^(2)-12xy " cos "theta+4y^(2)=36" sin "^(2)theta

Let (x, y) be such that sin^-1 (ax) + cos^-1 (bxy)=pi/2 If a=1 and b=0 , then (x,y)

If cos ^(-1) ""(x)/(2) + cos ^(-1) "" (y)/(3) = theta, then prove that 9x ^(2) - 12 xy cos theta + 4y ^(2) = 36 sin ^(2) theta

Find the slope of the normal to the curve x=1-asintheta , y=b\ cos^2theta at theta=pi/2 .

If cos^(-1)x/2+cos^(-1)y/3=theta , then 9x^2-12 x ycostheta+4y^2 is equal to (a) 36 (b) -36\ sin\ ^2theta (c) 36\ sin\ ^2theta (d) 36\ cos\ ^2theta

If x=3+2cos theta, y=5+2sin theta then the locus of the point (x,y) is a circle with centre and radius

If cos^(-1) . x/a - sin^(-1). y/b = theta (a , b , ne 0) , then the maximum value of b^(2) x^(2) + a^(2) y^(2) + 2ab xy sin theta equals

Prove that : x cos theta + y sin theta = a and x sin theta - y cos theta = b are the parametric equations of a circle for all theta satisfying 0le thetalt2pi

If x=a(1-costheta) , y=a(theta+sintheta) , prove that (d^2y)/(dx^2)=-1/a at theta=pi/2 .

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Solve sin^(-1) x - cos^(-1) x = cos ^(-1)(sqrt3/2).

    Text Solution

    |

  2. about to only mathematics

    Text Solution

    |

  3. Let cos^-1 (x/2)+cos^-1 (y/3)=theta and denote by f(x,y,theta)=0 the r...

    Text Solution

    |

  4. If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, then 1/(xy)+1/(yz)+1/(zx)=

    Text Solution

    |

  5. The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is :

    Text Solution

    |

  6. If a,b,c are real positive numbers and theta =tan^(-1)[(a(a+b+c))/(bc)...

    Text Solution

    |

  7. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  8. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  9. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  10. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  11. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  12. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  13. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  14. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  15. The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|,is

    Text Solution

    |

  16. Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then range of f(x) is

    Text Solution

    |

  17. Let f(x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest intege...

    Text Solution

    |

  18. The sum sum (n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

    Text Solution

    |

  19. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  20. The sum sum(k=1)^oocot^(-1)(2k^2) equals

    Text Solution

    |