Home
Class 12
MATHS
Find the value of 4 tan^-1 (1/5) - tan^-...

Find the value of `4 tan^-1 (1/5) - tan^-1 (1/239) `

A

`pi`

B

`pi/2`

C

`pi/3`

D

`pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) \), we will use the following identities: 1. \( 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \) 2. \( \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1} \left( \frac{x - y}{1 + xy} \right) \) ### Step 1: Rewrite \( 4 \tan^{-1} \left( \frac{1}{5} \right) \) We can express \( 4 \tan^{-1} \left( \frac{1}{5} \right) \) as \( 2 \cdot 2 \tan^{-1} \left( \frac{1}{5} \right) \). Using the first identity: \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} \right) \] Calculating the right-hand side: \[ = \tan^{-1} \left( \frac{\frac{2}{5}}{1 - \frac{1}{25}} \right) = \tan^{-1} \left( \frac{\frac{2}{5}}{\frac{24}{25}} \right) = \tan^{-1} \left( \frac{2 \cdot 25}{5 \cdot 24} \right) = \tan^{-1} \left( \frac{10}{24} \right) = \tan^{-1} \left( \frac{5}{12} \right) \] ### Step 2: Now compute \( 4 \tan^{-1} \left( \frac{1}{5} \right) \) Using the result from Step 1: \[ 4 \tan^{-1} \left( \frac{1}{5} \right) = 2 \tan^{-1} \left( \frac{5}{12} \right) \] Again applying the first identity: \[ 2 \tan^{-1} \left( \frac{5}{12} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{5}{12}}{1 - \left( \frac{5}{12} \right)^2} \right) \] Calculating the right-hand side: \[ = \tan^{-1} \left( \frac{\frac{10}{12}}{1 - \frac{25}{144}} \right) = \tan^{-1} \left( \frac{\frac{5}{6}}{\frac{119}{144}} \right) = \tan^{-1} \left( \frac{5 \cdot 144}{6 \cdot 119} \right) = \tan^{-1} \left( \frac{120}{119} \right) \] ### Step 3: Now compute \( 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) \) Using the second identity: \[ \tan^{-1} \left( \frac{120}{119} \right) - \tan^{-1} \left( \frac{1}{239} \right) = \tan^{-1} \left( \frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119} \cdot \frac{1}{239}} \right) \] Calculating the numerator: \[ \frac{120}{119} - \frac{1}{239} = \frac{120 \cdot 239 - 1 \cdot 119}{119 \cdot 239} = \frac{28740 - 119}{28441} = \frac{28721}{28441} \] Calculating the denominator: \[ 1 + \frac{120}{119} \cdot \frac{1}{239} = 1 + \frac{120}{28441} = \frac{28441 + 120}{28441} = \frac{28561}{28441} \] Thus, we have: \[ \tan^{-1} \left( \frac{28721}{28561} \right) \] ### Step 4: Simplifying the result Since \( 28721 = 28561 + 160 \), we can see that: \[ \tan^{-1} \left( \frac{28721}{28561} \right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Result Thus, the value of \( 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) \) is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

find the value of tan^(-1){cot(-1/4)}

Prove: 4 tan^(-1) (1/5 )- tan^(-1)( 1/239) = pi/4

Find the value of 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)

Find value of tan^-1 (3/4)+tan^-1 (3/5)-tan^-1 (8/19)

Find the value of theta : tan^(-1)""(16)/5 = tan^(-1) 4theta

Write the value of tan(2tan^-1(1/5)) .

Find the value of : tan^(-1)(- 1/sqrt(3))

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  2. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  3. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  4. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  5. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  6. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  7. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  8. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  9. The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|,is

    Text Solution

    |

  10. Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then range of f(x) is

    Text Solution

    |

  11. Let f(x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest intege...

    Text Solution

    |

  12. The sum sum (n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

    Text Solution

    |

  13. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  14. The sum sum(k=1)^oocot^(-1)(2k^2) equals

    Text Solution

    |

  15. The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+...

    Text Solution

    |

  16. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  17. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  18. Find the set of values of k for which x^(2) - kx + sin^(-1) ( sin 4) ...

    Text Solution

    |

  19. Ifp > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-...

    Text Solution

    |

  20. Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is

    Text Solution

    |