Home
Class 12
MATHS
Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then...

Let `f(x)=sec^-1(x-10)+cos^-1(10-x).` Then range of `f(x)` is

A

`{0,pi/2,pi}`

B

`{0,pi/2}`

C

`{pi/2}`

D

`{pi}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sec^{-1}(x - 10) + \cos^{-1}(10 - x) \), we will analyze the individual components of the function. ### Step 1: Determine the domain of \( \sec^{-1}(x - 10) \) The function \( \sec^{-1}(y) \) is defined for \( y \leq -1 \) or \( y \geq 1 \). Therefore, for \( \sec^{-1}(x - 10) \): \[ x - 10 \leq -1 \quad \text{or} \quad x - 10 \geq 1 \] Solving these inequalities: 1. \( x - 10 \leq -1 \) \[ x \leq 9 \] 2. \( x - 10 \geq 1 \) \[ x \geq 11 \] Thus, the domain for \( \sec^{-1}(x - 10) \) is \( (-\infty, 9] \cup [11, \infty) \). ### Step 2: Determine the domain of \( \cos^{-1}(10 - x) \) The function \( \cos^{-1}(y) \) is defined for \( 0 \leq y \leq 1 \). Therefore, for \( \cos^{-1}(10 - x) \): \[ 0 \leq 10 - x \leq 1 \] Solving these inequalities: 1. \( 10 - x \geq 0 \) \[ x \leq 10 \] 2. \( 10 - x \leq 1 \) \[ x \geq 9 \] Thus, the domain for \( \cos^{-1}(10 - x) \) is \( [9, 10] \). ### Step 3: Find the intersection of the domains The overall domain of \( f(x) \) is the intersection of the domains of \( \sec^{-1}(x - 10) \) and \( \cos^{-1}(10 - x) \): \[ (-\infty, 9] \cup [11, \infty) \cap [9, 10] = [9, 10] \] ### Step 4: Evaluate \( f(x) \) at the endpoints of the domain Now we will evaluate \( f(x) \) at the endpoints \( x = 9 \) and \( x = 10 \). 1. **At \( x = 9 \)**: \[ f(9) = \sec^{-1}(9 - 10) + \cos^{-1}(10 - 9) = \sec^{-1}(-1) + \cos^{-1}(1) \] \[ = \pi + 0 = \pi \] 2. **At \( x = 10 \)**: \[ f(10) = \sec^{-1}(10 - 10) + \cos^{-1}(10 - 10) = \sec^{-1}(0) + \cos^{-1}(0) \] \[ = \text{undefined} + \frac{\pi}{2} \quad \text{(since } \sec^{-1}(0) \text{ is undefined)} \] ### Step 5: Determine the range of \( f(x) \) Since \( f(x) \) is defined only at \( x = 9 \) and is undefined at \( x = 10 \), the only value we have is: \[ f(9) = \pi \] Thus, the range of \( f(x) \) is: \[ \text{Range of } f(x) = \{ \pi \} \] ### Final Answer The range of \( f(x) \) is \( \{ \pi \} \). ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Let f be a real - valued function defined on R ( the set of real numbers) such that f(x) = sin^(-1) ( sin x) + cos^(-1) ( cos x) The value of f(10) is equal to

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function

Find the range of f(x)=|x-1|-1

Let f(x)= cos^(-1)((x^(2))/(x^(2)+1)) . Then , the range of the f , is

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is

Let f(x)=a+2b cos^(-1)x, b gt0 . If domain and range of f(x) are the same set, then (b-a) is equal to :

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  2. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  3. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  4. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  5. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  6. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  7. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  8. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  9. The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|,is

    Text Solution

    |

  10. Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then range of f(x) is

    Text Solution

    |

  11. Let f(x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest intege...

    Text Solution

    |

  12. The sum sum (n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

    Text Solution

    |

  13. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  14. The sum sum(k=1)^oocot^(-1)(2k^2) equals

    Text Solution

    |

  15. The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+...

    Text Solution

    |

  16. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  17. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  18. Find the set of values of k for which x^(2) - kx + sin^(-1) ( sin 4) ...

    Text Solution

    |

  19. Ifp > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-...

    Text Solution

    |

  20. Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is

    Text Solution

    |