Home
Class 12
MATHS
Let f(x) = cosec^-1[1 + sin^2x], where [...

Let f`(x) = cosec^-1[1 + sin^2x], where [*]` denotes the greatest integer function, then the range of f

A

Is discrete and has two members

B

Is discrete and has four members

C

Is continuous

D

Is `(pi/2,pi/6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the range of the function \( f(x) = \csc^{-1}(1 + \sin^2 x) \) where \( [\cdot] \) denotes the greatest integer function. ### Step-by-Step Solution: 1. **Understanding the function**: The function we are dealing with is \( f(x) = \csc^{-1}(1 + \sin^2 x) \). The term \( \sin^2 x \) varies between 0 and 1 for all \( x \). 2. **Finding the range of \( 1 + \sin^2 x \)**: Since \( \sin^2 x \) varies from 0 to 1, we can find the range of \( 1 + \sin^2 x \): \[ \text{Minimum value: } 1 + 0 = 1 \] \[ \text{Maximum value: } 1 + 1 = 2 \] Thus, \( 1 + \sin^2 x \) varies from 1 to 2. 3. **Applying the greatest integer function**: The greatest integer function \( [1 + \sin^2 x] \) will take the values: - When \( 1 + \sin^2 x = 1 \) (when \( \sin^2 x = 0 \)), the greatest integer is 1. - When \( 1 + \sin^2 x \) is in the interval \( (1, 2) \) (when \( 0 < \sin^2 x < 1 \)), the greatest integer is also 1. - When \( 1 + \sin^2 x = 2 \) (when \( \sin^2 x = 1 \)), the greatest integer is 2. Therefore, the possible values of \( [1 + \sin^2 x] \) are 1 and 2. 4. **Finding the range of \( f(x) \)**: Now we evaluate \( f(x) \) for the values obtained from the greatest integer function: - For \( [1 + \sin^2 x] = 1 \): \[ f(x) = \csc^{-1}(1) = \frac{\pi}{2} \] - For \( [1 + \sin^2 x] = 2 \): \[ f(x) = \csc^{-1}(2) \] 5. **Conclusion**: The range of \( f(x) \) consists of the values \( \frac{\pi}{2} \) and \( \csc^{-1}(2) \). Thus, the range of \( f \) is: \[ \left\{ \frac{\pi}{2}, \csc^{-1}(2) \right\} \] ### Final Answer: The range of the function \( f(x) \) is \( \left\{ \frac{\pi}{2}, \csc^{-1}(2) \right\} \).
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest integer function) then the range of f(x) will be

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then find the domain and range

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  2. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  3. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  4. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  5. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  6. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  7. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  8. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  9. The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|,is

    Text Solution

    |

  10. Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then range of f(x) is

    Text Solution

    |

  11. Let f(x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest intege...

    Text Solution

    |

  12. The sum sum (n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

    Text Solution

    |

  13. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  14. The sum sum(k=1)^oocot^(-1)(2k^2) equals

    Text Solution

    |

  15. The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+...

    Text Solution

    |

  16. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  17. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  18. Find the set of values of k for which x^(2) - kx + sin^(-1) ( sin 4) ...

    Text Solution

    |

  19. Ifp > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-...

    Text Solution

    |

  20. Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is

    Text Solution

    |