Home
Class 12
MATHS
The sum sum (n=1)^ootan^(-1)(1/(2^n+2^(1...

The sum `sum _(n=1)^ootan^(-1)(1/(2^n+2^(1-n)))` equals

A

`pi/2`

B

`pi/4`

C

`pi/6`

D

`pi/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the infinite sum: \[ S = \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{1}{2^n + 2^{1-n}}\right) \] ### Step 1: Simplify the Argument of the Arctangent We start by simplifying the term inside the arctangent: \[ \frac{1}{2^n + 2^{1-n}} = \frac{1}{2^n + \frac{2}{2^n}} = \frac{1}{\frac{2^{2n} + 2}{2^n}} = \frac{2^n}{2^{2n} + 2} \] Thus, we can rewrite the sum as: \[ S = \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{2^n}{2^{2n} + 2}\right) \] ### Step 2: Factor the Denominator Now, we can factor the denominator: \[ 2^{2n} + 2 = 2(2^{2n-1} + 1) \] So we have: \[ S = \sum_{n=1}^{\infty} \tan^{-1}\left(\frac{2^n}{2(2^{2n-1} + 1)}\right) = \sum_{n=1}^{\infty} \frac{1}{2} \tan^{-1}\left(\frac{2^n}{2^{2n-1} + 1}\right) \] ### Step 3: Use the Identity for the Arctangent We can use the identity for the difference of arctangents: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] Let \( x = 2^n \) and \( y = 2^{n-1} \). Then: \[ \tan^{-1}(2^n) - \tan^{-1}(2^{n-1}) = \tan^{-1}\left(\frac{2^n - 2^{n-1}}{1 + 2^n \cdot 2^{n-1}}\right) \] This simplifies to: \[ \tan^{-1}(2^n) - \tan^{-1}(2^{n-1}) = \tan^{-1}\left(\frac{2^{n-1}}{1 + 2^{2n-1}}\right) \] ### Step 4: Rewrite the Sum We can express the sum \( S \) as a telescoping series: \[ S = \frac{1}{2} \left( \tan^{-1}(2^1) - \tan^{-1}(2^0) + \tan^{-1}(2^2) - \tan^{-1}(2^1) + \tan^{-1}(2^3) - \tan^{-1}(2^2) + \ldots \right) \] ### Step 5: Evaluate the Limits As \( n \) approaches infinity, \( \tan^{-1}(2^n) \) approaches \( \frac{\pi}{2} \) and \( \tan^{-1}(2^0) = \tan^{-1}(1) = \frac{\pi}{4} \). Thus, we have: \[ S = \frac{1}{2} \left( \frac{\pi}{2} - \frac{\pi}{4} \right) = \frac{1}{2} \cdot \frac{\pi}{4} = \frac{\pi}{8} \] ### Final Answer The sum evaluates to: \[ \boxed{\frac{\pi}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

The sum sum_(n=1)^oo tan^(-1)(3/(n^2+n-1)) is equal to

The sum sum_(n=1)^(10) ( n(2n-1)(2n+1))/( 5) is equal to _______.

The value of sum_(n=1)^oo(-1)^(n+1)(n/(5^n)) equals

sum_(n=1) ^(oo) (1)/((2n-1)!)=

The sum of sum _(n=1)^(16) (n^(4))/(4n^(2) -1) is

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=1)^(oo) (1)/(2n(2n+1)) is equal to

The value of sum sum_(n=1)^(oo)cot^(-1)(((n^(2)+2n)(n^(2)+2n+1)+1)/(2n+2)) is equal to

The sum of sum_(n=1)^(oo) ""^(n)C_(2) . (3^(n-2))/(n!) equal

Find the sum sum_(n=1)^(oo)(6^(n))/((3^(n)-2^(n))(3^(n+1)-2^(n+1)))

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  2. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  3. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  4. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  5. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  6. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  7. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  8. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  9. The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|,is

    Text Solution

    |

  10. Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then range of f(x) is

    Text Solution

    |

  11. Let f(x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest intege...

    Text Solution

    |

  12. The sum sum (n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

    Text Solution

    |

  13. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  14. The sum sum(k=1)^oocot^(-1)(2k^2) equals

    Text Solution

    |

  15. The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+...

    Text Solution

    |

  16. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  17. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  18. Find the set of values of k for which x^(2) - kx + sin^(-1) ( sin 4) ...

    Text Solution

    |

  19. Ifp > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-...

    Text Solution

    |

  20. Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is

    Text Solution

    |