Home
Class 12
MATHS
The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1)....

The sum `tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+5x+x^2))+tan^(-1)(1/(13+7x+x^2))` of first 100 terms of the series is

A

`tan^(-1) (100/(1+x^2+100x))`

B

`tan^(-1)((2x-100)/(1-x^2-100x))`

C

`tan^(-1)(100/(1+x^2-100x))`

D

`tan^(-1)((2x+100)/(1+x^2-100x))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the first 100 terms of the series given by: \[ S = \tan^{-1}\left(\frac{1}{1+x+x^2}\right) + \tan^{-1}\left(\frac{1}{3+3x+x^2}\right) + \tan^{-1}\left(\frac{1}{7+5x+x^2}\right) + \tan^{-1\left(\frac{1}{13+7x+x^2}\right) + \ldots \] we will analyze the general term and derive a formula for the sum. ### Step 1: Identify the pattern in the series The terms in the series can be expressed as: \[ \tan^{-1}\left(\frac{1}{a_n}\right) \] where \( a_n \) is a polynomial in \( x \). Observing the denominators: - The first term has \( a_1 = 1 + x + x^2 \) - The second term has \( a_2 = 3 + 3x + x^2 \) - The third term has \( a_3 = 7 + 5x + x^2 \) - The fourth term has \( a_4 = 13 + 7x + x^2 \) We can see that the coefficients of \( x \) and the constant terms follow a specific pattern. ### Step 2: Generalize the denominator The pattern for \( a_n \) can be observed as follows: - \( a_n = (2n-1) + (2n-1)x + x^2 \) This can be confirmed by calculating the first few terms: - For \( n=1 \): \( a_1 = 1 + 1x + x^2 \) - For \( n=2 \): \( a_2 = 3 + 3x + x^2 \) - For \( n=3 \): \( a_3 = 7 + 5x + x^2 \) - For \( n=4 \): \( a_4 = 13 + 7x + x^2 \) ### Step 3: Express the sum of the series The sum of the first \( n \) terms can be expressed as: \[ S_n = \sum_{k=1}^{n} \tan^{-1}\left(\frac{1}{(2k-1) + (2k-1)x + x^2}\right) \] ### Step 4: Use the addition formula for inverse tangent Using the identity for the difference of inverse tangents: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1}\left(\frac{a-b}{1+ab} \] we can rewrite the sum as: \[ S_n = \tan^{-1}(x + n) - \tan^{-1}(x) \] ### Step 5: Evaluate the sum for \( n = 100 \) Substituting \( n = 100 \): \[ S_{100} = \tan^{-1}(x + 100) - \tan^{-1}(x) \] ### Step 6: Final expression for the sum Thus, the sum of the first 100 terms of the series is: \[ S_{100} = \tan^{-1}(x + 100) - \tan^{-1}(x) \] ### Conclusion The final result for the sum of the first 100 terms of the series is: \[ S_{100} = \tan^{-1}\left(\frac{100}{1 + x^2 + 100x}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - C)(OBJECTIVE TYPE QUESTIONS (MORE THAN ONE OPTIONS ARE CORRECT))|13 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - A)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))|45 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

tan^(- 1) (1/(x+y)) +tan^(- 1) (y/(x^2+x y+1)) =cot^(- 1)x

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

Solve : tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=pi/4

Solve: tan^(- 1) (2+x) + tan^(- 1) (2 -x ) = tan^(-1) 2/3

Solve : tan^(-1) x + tan^(-1)( (2x)/(1-x^2)) = pi/3

Solve tan^(-1) ((1-x)/(1+x))= (1)/(2) tan^(-1) x(x gt 0)

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

AAKASH INSTITUTE ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-ASSIGNMENT (SECTION - B)(OBJECTIVE TYPE QUESTIONS (ONE OPTION IS CORRECT))
  1. Prove that: sin^(-1)4/5+sin^(-1)5/(13)+sin^(-1)(16)/(65)=pi/2

    Text Solution

    |

  2. If alpha=tan^(-1)((sqrt(3)x)/(2y-x)) , beta=tan^(-1)((2x-y)/(sqrt(3)y)...

    Text Solution

    |

  3. Evaluate: {(2tan^(-1)1)/5-pi/4} (ii) tan{1/2cos^(-1)(sqrt(5))/3}

    Text Solution

    |

  4. If -1 le x le -1/2, then sin^(-1)(3x-4x^3) equals

    Text Solution

    |

  5. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  6. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  7. If cot^(-1)(sqrt(cosalpha))-tan^(-1)(sqrt(cosalpha))=x , then sinx is ...

    Text Solution

    |

  8. If |cos^(-1) ((1 -x^(2))/(1 + x^(2)))| lt (pi)/(3), then

    Text Solution

    |

  9. The set of values of x satisfying |sin^(- 1)x|lt|cos^(- 1)x|,is

    Text Solution

    |

  10. Let f(x)=sec^-1(x-10)+cos^-1(10-x). Then range of f(x) is

    Text Solution

    |

  11. Let f(x) = cosec^-1[1 + sin^2x], where [*] denotes the greatest intege...

    Text Solution

    |

  12. The sum sum (n=1)^ootan^(-1)(1/(2^n+2^(1-n))) equals

    Text Solution

    |

  13. tan ((pi)/(4) + (1)/(2) cos^(-1) x) + tan ((pi)/(4) - (1)/(2) cos^(-1)...

    Text Solution

    |

  14. The sum sum(k=1)^oocot^(-1)(2k^2) equals

    Text Solution

    |

  15. The sum tan^(-1).(1)/(1+x+x^2)+tan^(-1).(1/(3+3x+x^2))+tan^(-1).(1/(7+...

    Text Solution

    |

  16. Find the sum of infinite series s = sin^(-1) ( 1/sqrt2) + sin ^(-1) ...

    Text Solution

    |

  17. If cot ^(-1) ((n^(2) - 10n + 21*6)/pi) gt pi/6 , n in N , then find t...

    Text Solution

    |

  18. Find the set of values of k for which x^(2) - kx + sin^(-1) ( sin 4) ...

    Text Solution

    |

  19. Ifp > q > 0a n dp r < -1 < q r , then find the value of tan^(-1)((p-...

    Text Solution

    |

  20. Number of solutions of the equation 2(sin^(-1)x)^2-sin^(-1)x-6=0 is

    Text Solution

    |