Home
Class 12
MATHS
STATEMENT -1 : tan^(-1)x=sin^(-1)yrArry ...

STATEMENT -1 : `tan^(-1)x=sin^(-1)yrArry in (-1,1)`
and
STATEMENT -2 : `-pi/2 lt tan^(-1)x lt pi/2`

A

Statement -1 is True, Statement-2 is True, Statement -2 is a correct explanation for Statement -1

B

Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement -1

C

Statement-1 is True, Statement -2 is False

D

Statement -1 is False, Statement -2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements, we need to analyze each statement step by step. ### Step 1: Analyze Statement 1 **Statement 1:** \( \tan^{-1} x = \sin^{-1} y \) implies that \( y \) belongs to the interval (-1, 1). **Explanation:** - The function \( \sin^{-1} y \) is defined for \( y \) in the interval [-1, 1]. However, the output of \( \sin^{-1} y \) ranges from \(-\frac{\pi}{2}\) to \(\frac{\pi}{2}\) when \( y \) takes values in (-1, 1). - Since \( \tan^{-1} x \) also has a range of \(-\frac{\pi}{2} < \tan^{-1} x < \frac{\pi}{2}\), for the equality \( \tan^{-1} x = \sin^{-1} y \) to hold, \( y \) must be in the open interval (-1, 1) (not including -1 and 1). ### Step 2: Analyze Statement 2 **Statement 2:** \( -\frac{\pi}{2} < \tan^{-1} x < \frac{\pi}{2} \). **Explanation:** - This statement is true as it is the definition of the range of the \( \tan^{-1} \) function. The function \( \tan^{-1} x \) is defined for all real numbers \( x \) and its output always lies between \(-\frac{\pi}{2}\) and \(\frac{\pi}{2}\). ### Step 3: Determine the Truth of Each Statement - **Statement 1:** True, because \( \tan^{-1} x = \sin^{-1} y \) implies \( y \) must be in (-1, 1). - **Statement 2:** True, as it correctly describes the range of the \( \tan^{-1} \) function. ### Step 4: Determine if Statement 2 Explains Statement 1 - Statement 2 provides the necessary information about the range of \( \tan^{-1} x \) which is crucial for understanding why \( y \) must be in (-1, 1). Thus, Statement 2 is indeed a correct explanation for Statement 1. ### Conclusion Both statements are true, and Statement 2 is a correct explanation for Statement 1. Therefore, the correct option is: **Option A:** Statement 1 is true, Statement 2 is true, and Statement 2 is the correct explanation for Statement 1. ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - F)(MATRIX-MATCH TYPE QUESTION)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - G)(INTEGER ANSWER TYPE QUESTIONS)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

STATEMENT -1 : The value of tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0} . and STATEMENT -2 : The value of tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}

STATEMENT-1: sin 2 > sin 3 STATEMENT-2: If x,y in (pi/2, pi), x lt y, then sin x gt siny

STATEMENT-1 : If tan^2 (sin^-1x) > 1 then x in(-1-1/sqrt2)uu(1/sqrt(2).1). STATEMENT-2 : The number of positive integral solution of tan^-1 1/y+cot^-1(1/x)=cot^-1(1/3), where x/y < 1, is 2. STATEMENT -3 : If sin^-1 x=-cos^-1 sqrt(1-x^2) and sin^-1 y=cos^-1 sqrt(1-y^2), then the exact range of (tan^-1 x+ tan6-1 y) is [-pi/4,pi/4].

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

If -1lt x lt 0 then tan^(-1) x equals

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

The values of x which satisfy 18(sin^(-1)x)^(2)-9pi sin^(-1)x +pi^(2)lt 0 and 18(tan^(-1)x)^(2)-9pi tan^(-1)x + pi^(2)lt 0 simultaneously are

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to (a) 4tan^(-1)x (b) 0 (c) pi/2 (d) pi