Home
Class 12
MATHS
STATEMENT -1 : The value of tan^(-1)x+ta...

STATEMENT -1 : The value of `tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0}`. and STATEMENT -2 : The value of `tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}`

A

Statement -1 is True, Statement-2 is True, Statement -2 is a correct explanation for Statement -4

B

Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement -4

C

Statement-1 is True, Statement -2 is False

D

Statement -1 is False, Statement -2 is True

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given statements step by step, we will analyze both Statement 1 and Statement 2 regarding the properties of inverse trigonometric functions. ### Step-by-Step Solution: **Statement 1:** We need to evaluate the expression \( \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) \). 1. **Understanding the Function:** The function \( \tan^{-1}(x) \) gives the angle whose tangent is \( x \). The function \( \tan^{-1}\left(\frac{1}{x}\right) \) gives the angle whose tangent is \( \frac{1}{x} \). 2. **Using the Identity:** We know that: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x+y}{1-xy}\right) \quad \text{if } xy < 1 \] In our case, let \( y = \frac{1}{x} \). Then: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \tan^{-1}\left(\frac{x + \frac{1}{x}}{1 - x \cdot \frac{1}{x}}\right) = \tan^{-1}\left(\frac{x + \frac{1}{x}}{0}\right) \] This expression is undefined when \( x = 0 \), but we are considering \( x \in \mathbb{R} - \{0\} \). 3. **Evaluating the Limit:** As \( x \to 0^+ \) (approaching from the right), \( \tan^{-1}(x) \to 0 \) and \( \tan^{-1}\left(\frac{1}{x}\right) \to \frac{\pi}{2} \). Thus: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) \to 0 + \frac{\pi}{2} = \frac{\pi}{2} \] As \( x \to 0^- \) (approaching from the left), \( \tan^{-1}(x) \to 0 \) and \( \tan^{-1}\left(\frac{1}{x}\right) \to -\frac{\pi}{2} \). Thus: \[ \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) \to 0 - \frac{\pi}{2} = -\frac{\pi}{2} \] Therefore, the statement \( \tan^{-1}(x) + \tan^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2} \) is only true for \( x > 0 \). **Conclusion for Statement 1:** The statement is partially true but not universally true for all \( x \in \mathbb{R} - \{0\} \). Thus, **Statement 1 is false**. --- **Statement 2:** We need to evaluate \( \tan^{-1}\left(\frac{1}{x}\right) \) based on the sign of \( x \). 1. **Case 1: \( x > 0 \)** - If \( x > 0 \), then \( \tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}(x) \) because \( \cot^{-1}(x) = \tan^{-1}\left(\frac{1}{x}\right) \). 2. **Case 2: \( x < 0 \)** - If \( x < 0 \), then \( \tan^{-1}\left(\frac{1}{x}\right) = -\pi + \cot^{-1}(x) \). This is because the angle for \( \tan^{-1}\left(\frac{1}{x}\right) \) will be in the fourth quadrant, which can be represented as \( -\pi + \cot^{-1}(x) \). **Conclusion for Statement 2:** The statement correctly describes the relationship of \( \tan^{-1}\left(\frac{1}{x}\right) \) based on the sign of \( x \). Thus, **Statement 2 is true**. ### Final Conclusion: - Statement 1 is false. - Statement 2 is true.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - F)(MATRIX-MATCH TYPE QUESTION)|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - G)(INTEGER ANSWER TYPE QUESTIONS)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - D)(LINKED COMPREHENSION TYPE QUESTIONS)|9 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of tan^(-1)(-x)-cot^(-1)(-1/x),x gt0

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

tan^(- 1)(a/x)+tan^(- 1)(b/x)=pi/2 then x=

Show that cot^(-1)x={(tan^(-1)(1//x),xgt0),(pi+tan^(-1)(1//x),xlt0):}

The value of tan(pi+x)tan(pi-x)cot^(2)x is

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

If 3tan^(-1)x +cot^(-1)x=pi , then x equals to

Write the value of tan^(-1)(1/x) for x<0 in terms of cot^(-1)(x) .

Prove that: tan^(-1)x+tan^(-1)1/x={pi/2,ifx >0, -pi/2 if x<0