Home
Class 12
MATHS
If f(x)=cos^(-1)(4x^3-3x)and lim(xto1/2+...

If `f(x)=cos^(-1)(4x^3-3x)and lim_(xto1/2+)f'(x)=a and lim_(xto1/2-)f'(x)=b` then `a + b+ 3` is equal to ____

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limits of the derivative of the function \( f(x) = \cos^{-1}(4x^3 - 3x) \) as \( x \) approaches \( \frac{1}{2} \) from the right and left. We will denote these limits as \( a \) and \( b \) respectively, and then compute \( a + b + 3 \). ### Step 1: Rewrite the function using a trigonometric identity We start with the function: \[ f(x) = \cos^{-1}(4x^3 - 3x) \] Notice that \( 4x^3 - 3x \) can be expressed in terms of cosine: \[ 4x^3 - 3x = \cos(3\theta) \quad \text{where } \theta = \cos^{-1}(x) \] Thus, we can rewrite \( f(x) \): \[ f(x) = \cos^{-1}(\cos(3\theta)) = 3\theta = 3\cos^{-1}(x) \] ### Step 2: Differentiate the function Next, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}(3\cos^{-1}(x)) = 3 \cdot \left(-\frac{1}{\sqrt{1 - x^2}}\right) = -\frac{3}{\sqrt{1 - x^2}} \] ### Step 3: Evaluate the limits as \( x \) approaches \( \frac{1}{2} \) Now we need to find the limits \( a \) and \( b \): \[ \lim_{x \to \frac{1}{2}^+} f'(x) = -\frac{3}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} = -\frac{3}{\sqrt{1 - \frac{1}{4}}} = -\frac{3}{\sqrt{\frac{3}{4}}} = -\frac{3}{\frac{\sqrt{3}}{2}} = -\frac{6}{\sqrt{3}} = -2\sqrt{3} \] Thus, \( a = -2\sqrt{3} \). Now, we calculate the left-hand limit: \[ \lim_{x \to \frac{1}{2}^-} f'(x) = -\frac{3}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} = -\frac{3}{\sqrt{1 - \frac{1}{4}}} = -\frac{3}{\sqrt{\frac{3}{4}}} = -\frac{6}{\sqrt{3}} = -2\sqrt{3} \] Thus, \( b = -2\sqrt{3} \). ### Step 4: Calculate \( a + b + 3 \) Now we can compute \( a + b + 3 \): \[ a + b + 3 = -2\sqrt{3} - 2\sqrt{3} + 3 = -4\sqrt{3} + 3 \] ### Final Answer The final answer is: \[ \boxed{3 - 4\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - H)(MULTIPLE TRUE-FALSE TYPE QUESTIONS)|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - I)(SUBJECTIVE TYPE QUESTION)|6 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - F)(MATRIX-MATCH TYPE QUESTION)|4 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

If f(x)=sin^(-1)x and lim_(xto1//2+)f(3x-4x^3)=a-3lim_(xto1//2+)f(x) , then [a] is equal to {where [] denotes G.I.F}

Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))) , then lim_(xto1^(-))f(x)=0 and lim_(xto2^(-))f(x)=2 Statement 2: lim_(xtooo)cot^(-1)x=0 and lim_(xto -oo)cot^(-1)x=pi

lim_(xto0) ((1-cos2x)(3+cosx))/(xtan4x) is equal to

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

If f(x)=sin^(-1)x then prove that lim_(x->1/2)f(3x-4x^3)=pi-3lim_(x->1/2)sin^(-1)x

Given that f(x) = (4-7x)/((3x+4)) , I = Lim_(x to 2 ) f(x) and m = Lim_(x to 0) f(x) , form the equation whose are 1/l , 1/m

lim_(xto1) (sum_(r=1)^(n)x^(r)-n)/(x-1) is equal to

Let lim_(xto1)(x^(a)-ax+a-1)/((x-1)^(2))=f(a) . The value of f(101) equals

Let f(x)={{:(1+(2x)/(a)", "0lexlt1),(ax", "1lexlt2):}."If" lim_(xto1) "f(x) exists, then a is "

If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim_(xto oo)f(x) is