Home
Class 12
MATHS
The value (s) of theta satisfying the eq...

The value (s) of `theta` satisfying the equation `theta=tan^(- 1)(2tan^2theta)-1/2(sin^(- 1)((3sin2theta)/(5+4cos2theta)))` is

A

(a) `npi+pi/4`

B

(b) `npi+tan^(-1)(-2)`

C

(c) `npi+pi/3`

D

(d) `npi+pi/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \theta = \tan^{-1}(2\tan^2\theta) - \frac{1}{2}\sin^{-1}\left(\frac{3\sin 2\theta}{5 + 4\cos 2\theta}\right) \] we will follow these steps: ### Step 1: Multiply both sides by 2 Multiply the entire equation by 2 to simplify the expression: \[ 2\theta = 2\tan^{-1}(2\tan^2\theta) - \sin^{-1}\left(\frac{3\sin 2\theta}{5 + 4\cos 2\theta}\right) \] ### Step 2: Substitute \(\theta = \frac{\pi}{4}\) Let's check if \(\theta = \frac{\pi}{4}\) satisfies the equation. Calculating the left-hand side (LHS): \[ 2\theta = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] Now, calculate the right-hand side (RHS): \[ RHS = 2\tan^{-1}(2\tan^2(\frac{\pi}{4})) - \sin^{-1}\left(\frac{3\sin(2 \cdot \frac{\pi}{4})}{5 + 4\cos(2 \cdot \frac{\pi}{4})}\right) \] ### Step 3: Calculate \(\tan^2(\frac{\pi}{4})\) Since \(\tan(\frac{\pi}{4}) = 1\): \[ \tan^2(\frac{\pi}{4}) = 1 \] Thus, \[ 2\tan^2(\frac{\pi}{4}) = 2 \cdot 1 = 2 \] Now, calculate \(2\tan^{-1}(2)\): \[ RHS = 2\tan^{-1}(2) - \sin^{-1}\left(\frac{3\sin(\frac{\pi}{2})}{5 + 4\cos(\frac{\pi}{2})}\right) \] ### Step 4: Calculate \(\sin(\frac{\pi}{2})\) and \(\cos(\frac{\pi}{2})\) We know: \[ \sin(\frac{\pi}{2}) = 1 \quad \text{and} \quad \cos(\frac{\pi}{2}) = 0 \] Thus, \[ RHS = 2\tan^{-1}(2) - \sin^{-1}\left(\frac{3 \cdot 1}{5 + 0}\right) = 2\tan^{-1}(2) - \sin^{-1}\left(\frac{3}{5}\right) \] ### Step 5: Use the identity for \(2\tan^{-1}(x)\) Using the identity \(2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)\): Let \(x = 2\): \[ 2\tan^{-1}(2) = \tan^{-1}\left(\frac{4}{1-4}\right) = \tan^{-1}\left(-\frac{4}{3}\right) \] ### Step 6: Combine the terms Now we have: \[ RHS = \tan^{-1}\left(-\frac{4}{3}\right) - \sin^{-1}\left(\frac{3}{5}\right) \] ### Step 7: Use the addition formula for inverse tangents Using the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) \] We can express: \[ RHS = -\tan^{-1}\left(\frac{4}{3}\right) - \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 8: Check if LHS equals RHS Now we check if: \[ \frac{\pi}{2} = \tan^{-1}\left(\text{undefined}\right) \] This indicates that the equation holds true when \(\theta = \frac{\pi}{4}\). ### Conclusion Thus, the values of \(\theta\) satisfying the equation are: \[ \theta = n\pi + \frac{\pi}{4} \] where \(n\) is any integer.
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE ENGLISH|Exercise ASSIGNMENT (SECTION - I)(SUBJECTIVE TYPE QUESTION)|6 Videos
  • INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Section - j|3 Videos

Similar Questions

Explore conceptually related problems

The general value of theta satisfying the equation tan^2theta+sec2theta=1 is_____

The general value of theta satisfying the equation tan^2theta+sec2theta=1 is_____

(1+tan^2theta) sin^2theta

The value of theta lying between 0 and pi/2 and satisfying the equation |(1+cos^2theta, sin^2theta, 4sin4theta),(cos^2theta, 1+sin^2theta, 4sin4theta)(cos^2theta, sin^2theta, 1+4sin4theta)|=0 is (are)

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))

Find the general values of theta which satisfies the equation tan theta =-1 and cos theta =(1)/(sqrt(2))

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

The number of solution satisfying the equations tan 4theta=cot 5theta and sin 2theta=cos theta in [0,2pi] is

Find the most general value of theta which satisfies the equation sin theta =(1)/(2) and tan theta =(1)/(sqrt(3))