Home
Class 12
MATHS
The parabolas y^2=4xa n dx^2=4y divide t...

The parabolas `y^2=4xa n dx^2=4y` divide the square region bounded by the lines `x=4,y=4` and the coordinate axes. If `S_1,S_2,S_3` are the areas of these parts numbered from top to bottom, respectively, then `S_1: S_2-=1:1` (b) `S_2: S_3-=1:2` `S_1: S_3-=1:1` (d) `S_1:(S_1+S_2)=1:2`

A

`1 : 1 : 1`

B

`2 : 1 : 2`

C

`1 : 2 : 3`

D

`1 : 2 : 1`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - C Objective Type Questions (More than one options are correct)|3 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - D Linked Comprehension Type Questions|3 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section - A Competition Level Questions|24 Videos
  • APPLICATION OF DERIVATIVES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment SECTION-J (Aakash Challengers Questions )|8 Videos
  • BINOMIAL THEOREM

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (section-J) Objective type question (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If S_1,S_2,S_3 are the sum of first n natural numbers, their squares and their cubes, respectively, show that 9S_2^2=S_3(1+8S_1) .

If S_1, S_2, S_3 are the sums of first n natural numbers, their squares and cubes respectively, show that 9S_2^ 2=S_3(1+8S_1)dot

If S_(1), S_(2) and S_(3) are the sums of first n natureal numbers, their squares and their cubes respectively, then (S_(1)^(4)S_(2)^(2)-S_(2)^(2)S_(3)^(2))/(S_(1)^(2) +S_(2)^(2))=

Let the sum of n, 2n, 3n terms of an A.P. be S_1,S_2 and S_3 , respectively, show that S_3=3(S_2-S_1) .

If S_1 ,S_2 and S_3 denote the sum of first n_1,n_2 and n_3 terms respectively of an A.P. Then S_1/n_1 (n_2-n_3) + S_2/n_2 (n_3-n_1)+S_3/n_3 (n_1-n_2) equals :

If S_1, S_2, S_3 be respectively the sums of n ,2n ,3n terms of a G.P., then prove that (S_1)^2+(S_2)^2=S_1(S_2+S_3) .

If S_1,S_2a n dS_3 be respectively the sum of n, 2n and 3n terms of a G.P., prove that S_1(S_3-S_2)=(S_2-S_1)^2

If S_1 be the sum of (2n+1) term of an A.P. and S_2 be the sum of its odd terms then prove that S_1: S_2=(2n+1):(n+1)dot

If the sum of n , 2n , 3n terms of an AP are S_1,S_2,S_3 respectively . Prove that S_3=3(S_2-S_1)

The sum of n, 2n, 3n terms of an A.P. are S_1, S_2, S_3 respectively. Prove that S_3 = 3(S_2 - S_1)