Home
Class 12
MATHS
if for a matrix A, A^2+I=O, where I is t...

if for a matrix `A, A^2+I=O`, where I is the identity matrix, then A equals

A

`{:[(1,0),(0,1)]:}`

B

`{:[(i,0),(0,-i)]:}`

C

`{:[(1,2),(-1,1)]:}`

D

`{:[(-1,0),(0,-1)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( A^2 + I = O \) where \( I \) is the identity matrix and \( O \) is the zero matrix, we can follow these steps: ### Step 1: Rearranging the Equation We start with the equation: \[ A^2 + I = O \] Rearranging this gives: \[ A^2 = -I \] ### Step 2: Understanding the Implications The equation \( A^2 = -I \) implies that when we square the matrix \( A \), we get the negative of the identity matrix. This means that \( A \) must be a matrix whose eigenvalues are complex numbers, specifically \( i \) and \( -i \) (where \( i \) is the imaginary unit). ### Step 3: Considering Possible Forms of \( A \) Since \( A^2 = -I \), we can consider a 2x2 matrix of the form: \[ A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \] This matrix is a standard representation of a rotation in the complex plane. ### Step 4: Verifying the Solution To verify that this matrix satisfies the original equation, we compute \( A^2 \): \[ A^2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \] Calculating this product: \[ = \begin{pmatrix} 0 \cdot 0 + (-i) \cdot i & 0 \cdot (-i) + (-i) \cdot 0 \\ i \cdot 0 + 0 \cdot i & i \cdot (-i) + 0 \cdot 0 \end{pmatrix} \] \[ = \begin{pmatrix} 0 + 1 & 0 \\ 0 & -(-1) \end{pmatrix} \] \[ = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I \] Thus, \[ A^2 = -I \implies A^2 + I = 0 \] ### Conclusion The matrix \( A \) that satisfies the equation \( A^2 + I = O \) is: \[ A = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the for ngeq2. A^n is equal to 2^(n-1)A-(n-1)l b. 2^(n-1)A-I c. n A-(n-1)l d. n A-I

Matrix A such that A^2=2A-I ,w h e r eI is the identity matrix, the for ngeq2. A^n is equal to 2^(n-1)A-(n-1)l b. 2^(n-1)A-I c. n A-(n-1)l d. n A-I

If A is skew symmetric matrix, then I - A is (where I is identity matrix of the order equal to that of A)

If I_n is the identity matrix of order n, then rank of I_n is

If A=[1 2 2 2 1-2a2b] is a matrix satisfying the equation AA^T=""9I , where I is 3xx3 identity matrix, then the ordered pair (a, b) is equal to : (1) (2,-1) (2) (-2,""1) (3) (2, 1) (4) (-2,-1)

If A is a square matrix such that A(a d j\ A)=5I , where I denotes the identity matrix of the same order. Then, find the value of |A| .

Find all solutions of the matrix equation X^2=1, where 1 is the 2*2 unit matrix, and X is a real matrix,i.e. a matrix all of whose elements are real.

If A=[(1, 0,-3 ),(2, 1 ,3 ),(0, 1 ,1)] , then verify that A^2+A=A(A+I) , where I is the identity matrix.

If for matrix A, A^(3)=I then A^(-1)=

A square matrix M of order 3 satisfies M^(2)=I-M , where I is an identity matrix of order 3. If M^(n)=5I-8M , then n is equal to _______.

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |