Home
Class 12
MATHS
If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0...

If `{:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=`

A

`(1)/(3){:[(1,1),(2,1)]:}`

B

`(1)/(3){:[(2,1),(1,2)]:}`

C

`{:[(1,1),(2,1)]:}`

D

`{:[(1,1),(1,1)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the matrix \( A \) given the equations: 1. \( A + B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \) (Equation 1) 2. \( A - 2B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \) (Equation 2) ### Step 1: Multiply Equation 1 by 2 To eliminate \( B \) when we add the two equations, we can multiply the first equation by 2: \[ 2(A + B) = 2 \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \] This gives us: \[ 2A + 2B = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} \quad (Equation 3) \] ### Step 2: Write down Equation 2 We can keep Equation 2 as it is: \[ A - 2B = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \quad (Equation 2) \] ### Step 3: Add Equation 3 and Equation 2 Now we will add Equation 3 and Equation 2 together: \[ (2A + 2B) + (A - 2B) = \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} + \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} \] This simplifies to: \[ 2A + 2B + A - 2B = 3A \] And on the right side, we calculate: \[ \begin{pmatrix} 2 - 1 & 0 + 1 \\ 2 + 0 & 2 - 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \] ### Step 4: Set up the equation for A Now we have: \[ 3A = \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} \] ### Step 5: Solve for A To find \( A \), we divide both sides by 3: \[ A = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix} \] ### Final Result Thus, the matrix \( A \) is: \[ A = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix} \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A=[{:(0,1),(1,1):}] "and" B=[{:(0,-1),(1,0):}] , then show that (A+B)(A-B)neA^(2)-B^(2)

The matrix X in the equation AX=B, such that A= [(1,3),(0,1)] and B= [(1,-1),(0,1)] is given by (A) [(1,0),(-3,1)] (B) [(1,-4),0,1)] (C) [(1,-3),(0,1)] (D) [(0,-1),(-3,1)]

if A'=[{:(3,4),(-1,2),(0,1):}]and B=[{:(-1,2,1),(1,2,3):}], then verify that (i) (A+B)'=A'+B'(ii) (A-B)'=A'-B'

(i) if A=[{:(1,-4),(3,1):}]and b=[{:(1,0,5),(-2,4,3):}], then show that : (AB)'=B'A' (ii) if A=[{:(2,3),(0,1):}]and B=[{:(3,4),(2,1):}], then prove that : (AB)'=B'A'

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

Show that two matrices A=[(1,-1,0),(2,1,1)] and B=[(3,0,1),(0,3,1)] are row equivalent.

Given A=[{:(,2,1),(,3,0):}], B=[(1,1),(5,2)] and C=[{:(,-3,-1),(,0,0):}] , find (i) 2A-3B+C (ii) A+2C-B

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |