Home
Class 12
MATHS
{:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2...

`{:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:}` is equal to

A

`{:[(45),(44)]:}`

B

`{:[(43),(45)]:}`

C

`{:[(44),(43)]:}`

D

`{:[(43),(44)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression `{:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:}`, we will follow these steps: ### Step 1: Identify the matrices We have three matrices: - Matrix A: \[ A = \begin{pmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{pmatrix} \] - Matrix B: \[ B = \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \] - Matrix C: \[ C = \begin{pmatrix} 4 \\ 2 \end{pmatrix} \] ### Step 2: Check the feasibility of multiplication To multiply matrices A and B, we need to check if the number of columns in A equals the number of rows in B. - Matrix A has 3 columns (2x3) and Matrix B has 3 rows (3x1). - Since the number of columns in A (3) equals the number of rows in B (3), the multiplication is feasible. ### Step 3: Perform the multiplication \( A \times B \) Now we will multiply matrix A by matrix B: \[ A \times B = \begin{pmatrix} 7 & 1 & 2 \\ 9 & 2 & 1 \end{pmatrix} \times \begin{pmatrix} 3 \\ 4 \\ 5 \end{pmatrix} \] Calculating the first element: \[ (7 \times 3) + (1 \times 4) + (2 \times 5) = 21 + 4 + 10 = 35 \] Calculating the second element: \[ (9 \times 3) + (2 \times 4) + (1 \times 5) = 27 + 8 + 5 = 40 \] Thus, \[ A \times B = \begin{pmatrix} 35 \\ 40 \end{pmatrix} \] ### Step 4: Multiply matrix C by 2 Now we will calculate \( 2C \): \[ 2C = 2 \times \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 2 \times 4 \\ 2 \times 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \end{pmatrix} \] ### Step 5: Add the results from Step 3 and Step 4 Now we will add the results of \( A \times B \) and \( 2C \): \[ \begin{pmatrix} 35 \\ 40 \end{pmatrix} + \begin{pmatrix} 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 35 + 8 \\ 40 + 4 \end{pmatrix} = \begin{pmatrix} 43 \\ 44 \end{pmatrix} \] ### Final Result Thus, the final result of the expression is: \[ \begin{pmatrix} 43 \\ 44 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is equal to

(2)/(3!)+(4)/(5!)+(6)/(7!)+ ..is equal to

if [{:(3,2),(7,5):}]A{:[(-1,1),(-2,1):}]={:[(2,-1),(0,4):}] then trace of A is equal to

[[7,1,2],[9,2,1]][[3],[4],[5]] + 2[[4],[5]] is equal to a) [[43],[50]] b) [[43],[45]] c) [[45],[44]] d) [[44],[45]]

If the matrix A is such that A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}] ,then A is equal to

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

If A=[{:(2,3,-1),(1,4,2):}] and B=[{:(2,3),(4,5),(2,1):}] then AB and BA are defined and equal.

If C= [{:(,1,4,6),(,7,2,5),(,9,8,3):}] [{:(,0,2,3),(,-2,0,4),(,-3,-4,0):}] [{:(,1,7,9),(,4,2,8),(,6,5,3):}] Then trace of C+C^(3)+C^(5)+……+C^(99) is

Determine the product [(-4, 4, 4),(-7, 1, 3),( 5,-3,-1)][(1,-1, 1),( 1,-2,-2),( 2, 1, 3)] and use it to solve the system of equations: x-y+z=4,\ \ x-2y-2z=9,\ \ 2x+y+3z=1.

If {1/2(A-A'+1)}^-1=2/lambda[(lambda-13,-lambda/3,lambda/3),(-17,10,-1),(7,-11,5)] for A=[(-2,3,4),(5,-4,-3),(7,2,9)] , then lambda is

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |