Home
Class 12
MATHS
If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:...

If `f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}`, then f(A) is equal to

A

`{:[(0,-4),(8,8)]:}`

B

`{:[(2,1),(2,0)]:}`

C

`{:[(1,1),(1,0)]:}`

D

`{:[(8,4),(8,0)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(A) \) where \( f(x) = x^2 + 4x - 5 \) and \( A = \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) We first need to find \( A^2 \) by multiplying matrix \( A \) by itself. \[ A^2 = A \cdot A = \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 1 \cdot 1 + 2 \cdot 4 = 1 + 8 = 9 \) - First row, second column: \( 1 \cdot 2 + 2 \cdot (-3) = 2 - 6 = -4 \) - Second row, first column: \( 4 \cdot 1 + (-3) \cdot 4 = 4 - 12 = -8 \) - Second row, second column: \( 4 \cdot 2 + (-3) \cdot (-3) = 8 + 9 = 17 \) Thus, \[ A^2 = \begin{pmatrix} 9 & -4 \\ -8 & 17 \end{pmatrix} \] ### Step 2: Calculate \( 4A \) Next, we calculate \( 4A \): \[ 4A = 4 \cdot \begin{pmatrix} 1 & 2 \\ 4 & -3 \end{pmatrix} = \begin{pmatrix} 4 \cdot 1 & 4 \cdot 2 \\ 4 \cdot 4 & 4 \cdot (-3) \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ 16 & -12 \end{pmatrix} \] ### Step 3: Calculate \( 5I \) Now, we calculate \( 5I \) where \( I \) is the identity matrix: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \implies 5I = 5 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] ### Step 4: Calculate \( f(A) = A^2 + 4A - 5I \) Now we can compute \( f(A) \): \[ f(A) = A^2 + 4A - 5I = \begin{pmatrix} 9 & -4 \\ -8 & 17 \end{pmatrix} + \begin{pmatrix} 4 & 8 \\ 16 & -12 \end{pmatrix} - \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} \] Calculating the sum: 1. First, add \( A^2 \) and \( 4A \): \[ \begin{pmatrix} 9 & -4 \\ -8 & 17 \end{pmatrix} + \begin{pmatrix} 4 & 8 \\ 16 & -12 \end{pmatrix} = \begin{pmatrix} 9 + 4 & -4 + 8 \\ -8 + 16 & 17 - 12 \end{pmatrix} = \begin{pmatrix} 13 & 4 \\ 8 & 5 \end{pmatrix} \] 2. Now subtract \( 5I \): \[ \begin{pmatrix} 13 & 4 \\ 8 & 5 \end{pmatrix} - \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} 13 - 5 & 4 - 0 \\ 8 - 0 & 5 - 5 \end{pmatrix} = \begin{pmatrix} 8 & 4 \\ 8 & 0 \end{pmatrix} \] ### Final Result Thus, \[ f(A) = \begin{pmatrix} 8 & 4 \\ 8 & 0 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

(i) if A=[{:(1,-1),(2,3):}], then show that A^(2)-4A+5I=O. (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}], then find f(A).

If f(x+4) = x^(2) - 1 , then f(x) is equal to

If g(x)=x ^2 +x−1 and (gof)(x)=4x^2−10x+5 , then f(5/4 ) is equal to:

If g(x)=x^3+x-2 and g(f(x))=x^3+3x^2+4x then f(1)+f(2) is equal to ________

If n be a natural number define polynomial f_(n)(x) of n^(th) degree as follows f_(n)(costheta)cosntheta i.e. f_(2)(x)=2x^(2)-1 f_(3)(x)=4x^(3)-3x_(1) Then f_(6)(x) is equal to

If g(x)=x^2-1 and gof (x)= x^2+4x+3 , then f(1/2) is equal (f (x) gt 0 AA x in R) :

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

Let f(x) polynomial of degree 5 with leading coefficient unity such that f(1)=5, f(2)=4,f(3)=3,f(4)=2,f(5)=1, then f(6) is equal to

If f(x)=7x^(4)-2x^(3)-8x-5 find f(-1)

If f(x) = (x-4) / (2sqrtx) , then f' (4) is equal to

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |