Home
Class 12
MATHS
If the matrix A is such that ({:(1,3),(...

If the matrix A is such that `({:(1,3),(0,1):})A=({:(1,1),(0,-1):})`, then what is A equal to ?

A

`{:[(1,0),(-3,1)]:}`

B

`{:[(1,-4),(0,1)]:}`

C

`{:[(1,-3),(0,1)]:}`

D

`{:[(1,-1),(-3,1)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((1, 3; 0, 1)A = (1, 1; 0, -1)\) for the matrix \(A\), we will follow these steps: ### Step 1: Identify the matrices Let \(B = (1, 3; 0, 1)\) and \(C = (1, 1; 0, -1)\). We need to find \(A\) such that \(BA = C\). ### Step 2: Find the inverse of matrix \(B\) To isolate \(A\), we can multiply both sides of the equation by the inverse of \(B\): \[ A = B^{-1}C \] ### Step 3: Calculate the determinant of \(B\) The determinant of matrix \(B\) is calculated as follows: \[ \text{det}(B) = (1)(1) - (3)(0) = 1 \] ### Step 4: Find the adjoint of matrix \(B\) To find the adjoint of \(B\), we first calculate the cofactors: - The cofactor \(B_{11} = 1\) (removing the first row and first column) - The cofactor \(B_{12} = 0\) (removing the first row and second column) - The cofactor \(B_{21} = -3\) (removing the second row and first column) - The cofactor \(B_{22} = 1\) (removing the second row and second column) Thus, the cofactor matrix is: \[ \text{Cofactor}(B) = \begin{pmatrix} 1 & 0 \\ -3 & 1 \end{pmatrix} \] The adjoint of \(B\) is the transpose of the cofactor matrix: \[ \text{adj}(B) = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \] ### Step 5: Calculate the inverse of matrix \(B\) Now we can find the inverse of \(B\): \[ B^{-1} = \frac{\text{adj}(B)}{\text{det}(B)} = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \] ### Step 6: Multiply \(B^{-1}\) by \(C\) to find \(A\) Now we compute \(A\): \[ A = B^{-1}C = \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix} \] Calculating the product: - First row, first column: \(1 \cdot 1 + (-3) \cdot 0 = 1\) - First row, second column: \(1 \cdot 1 + (-3) \cdot (-1) = 1 + 3 = 4\) - Second row, first column: \(0 \cdot 1 + 1 \cdot 0 = 0\) - Second row, second column: \(0 \cdot 1 + 1 \cdot (-1) = 0 - 1 = -1\) Thus, we have: \[ A = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix} \] ### Final Answer The matrix \(A\) is: \[ A = \begin{pmatrix} 1 & 4 \\ 0 & -1 \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If the matrix A is such that A[{:(-1,2),(3,1):}]=[{:(-4,1),(7,7):}] ,then A is equal to

If A = {:((1,-1),(1,2)):} and I={:((1,0),(0,1)):} then 3A^(-1) is equal to :

Matrix [{:(1,0),(0,1):}] is :

If for a matrix A, absA=6and adj A= {:[(1,-2,4),(4,1,1),(-1,k,0)]:} , then k is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

If A=[{:(1,0,0),(0,1,0),(a,b,-1):}] then A^(2) is equal to

The matrix X in the equation AX=B, such that A= [(1,3),(0,1)] and B= [(1,-1),(0,1)] is given by (A) [(1,0),(-3,1)] (B) [(1,-4),0,1)] (C) [(1,-3),(0,1)] (D) [(0,-1),(-3,1)]

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If the matrix {:[(a,b),(c,d)]:} is commutative with matrix {:[(1,1),(0,1)]:} , then

Find the matrix A such that : [(1 ,0 ),(0 ,1)]A=[(3 ,3 ,5 ),(1, 0 ,1)] (ii) A[(1, 2, 3 ),(4, 5 ,6)]=[(-7,-8,-9 ),(2, 4 ,6)]

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |