Home
Class 12
MATHS
If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(...

If `A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:}` then B is equal to

A

`(1)/(3){:[(-2,-1,15),(5,8,-11)]:}`

B

`(1)/(3){:[(2,1,-15),(5,-8,-11)]:}`

C

`(1)/(3){:[(2,-1,15),(5,8,11)]:}`

D

`(1)/(3){:[(-2,-1,15),(-5,8,11)]:}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the instructions given in the video transcript. ### Step-by-Step Solution: 1. **Identify the given matrices:** We are given: \[ A = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 5 & 7 \end{pmatrix} \] and \[ 2A - 3B = \begin{pmatrix} 4 & 5 & -9 \\ 1 & 2 & 3 \end{pmatrix} \] 2. **Calculate \(2A\):** To find \(2A\), we multiply each element of matrix \(A\) by 2: \[ 2A = 2 \times \begin{pmatrix} 1 & 2 & 3 \\ -2 & 5 & 7 \end{pmatrix} = \begin{pmatrix} 2 \times 1 & 2 \times 2 & 2 \times 3 \\ 2 \times -2 & 2 \times 5 & 2 \times 7 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 6 \\ -4 & 10 & 14 \end{pmatrix} \] 3. **Set up the equation:** We now substitute \(2A\) into the equation \(2A - 3B = \begin{pmatrix} 4 & 5 & -9 \\ 1 & 2 & 3 \end{pmatrix}\): \[ \begin{pmatrix} 2 & 4 & 6 \\ -4 & 10 & 14 \end{pmatrix} - 3B = \begin{pmatrix} 4 & 5 & -9 \\ 1 & 2 & 3 \end{pmatrix} \] 4. **Rearranging the equation:** To isolate \(3B\), we add \(3B\) to both sides and subtract the matrix on the right from the left: \[ 2A - \begin{pmatrix} 4 & 5 & -9 \\ 1 & 2 & 3 \end{pmatrix} = 3B \] 5. **Perform the subtraction:** We perform the subtraction element-wise: \[ \begin{pmatrix} 2 - 4 & 4 - 5 & 6 - (-9) \\ -4 - 1 & 10 - 2 & 14 - 3 \end{pmatrix} = \begin{pmatrix} -2 & -1 & 15 \\ -5 & 8 & 11 \end{pmatrix} \] 6. **Express \(B\):** Now we have: \[ 3B = \begin{pmatrix} -2 & -1 & 15 \\ -5 & 8 & 11 \end{pmatrix} \] To find \(B\), we divide each element of the matrix by 3: \[ B = \frac{1}{3} \begin{pmatrix} -2 & -1 & 15 \\ -5 & 8 & 11 \end{pmatrix} = \begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & 5 \\ -\frac{5}{3} & \frac{8}{3} & \frac{11}{3} \end{pmatrix} \] ### Final Result: Thus, the matrix \(B\) is: \[ B = \begin{pmatrix} -\frac{2}{3} & -\frac{1}{3} & 5 \\ -\frac{5}{3} & \frac{8}{3} & \frac{11}{3} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

if A=[{:(1,2,-5),(-3,4,6):}]and B[{:(-2,3,-4),(1,2,3):}]' then find 2A+B.

if A=[{:(-1,2,,3),(5,7,9),(-2,1,1):}]and B=[{:(-4,1,-5),(1,2,0),(1,3,1):}], then verify that (I) (A+B)'=A'+B',(ii) (A-b)'=A'=B'

If A={1,2,3,4,5,6) and B={2,4,5,6,8,9,10} then A DeltaB is equal to

If A=[{:(2,3,-1),(1,4,2):}] and B=[{:(2,3),(4,5),(2,1):}] then AB and BA are defined and equal.

if A=[{:(2,1,3),(1,-1,2),(4,1,5):}]and B=[{:(1,-1,2),(2,1,5),(4,1,3):}], then show that : (i) (A+B)'=A'+B' (ii) (A+4B)'=A'+4B'

A and B are two matrices of same order 3 xx 3 , where A=[{:(1,2,3),(2,3,4),(5,6,8):}],B=[{:(3,2,5),(2,3,8),(7,2,9):}] The value of adj (adj A) is,

if 2A -3B =[{:(4,2),(-1,0),(3,-2):}]and 3A+B=[{:(1,0),(3,5),(-1,4):}] , then find the matrices A And B,

if A=[{:(1,2,-3),(5,0,2),(1,-1,1):}],B=[{:(3,-1,2),(4,2,5),(2,0,3):}]and c=[{:(4,1,2),(0,3,2),(1,-2,3):}], then compure (A+B) and (B-C), Also , verify that A+(B-C)=(A+B)-C.

If A={1,2,3,4,5,6,7,8} and B={1,3,4,6,7,8,9} then

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |