Home
Class 12
MATHS
If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}...

If `{:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}`, then

A

x=-1, y=0

B

x=1, y=0

C

x=0, y=1

D

x=1, y=1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrices, we start by writing down the matrices involved: 1. The first matrix is \( \begin{pmatrix} x & 1 \\ -1 & -y \end{pmatrix} \). 2. The second matrix is \( \begin{pmatrix} y & 1 \\ 3 & x \end{pmatrix} \). 3. The resulting matrix is \( \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \). We can express the equation as follows: \[ \begin{pmatrix} x & 1 \\ -1 & -y \end{pmatrix} + \begin{pmatrix} y & 1 \\ 3 & x \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \] ### Step 1: Set up the equations from the matrix addition From the addition of the matrices, we can equate the corresponding elements: 1. From the (1,1) position: \( x + y = 1 \) (Equation 1) 2. From the (1,2) position: \( 1 + 1 = 2 \) (This does not provide any new information) 3. From the (2,1) position: \( -1 + 3 = 2 \) (This does not provide any new information) 4. From the (2,2) position: \( -y + x = 1 \) (Equation 2) ### Step 2: Solve the equations Now we have two equations to work with: 1. \( x + y = 1 \) (Equation 1) 2. \( -y + x = 1 \) (Equation 2) We can rearrange Equation 1 to express \( y \) in terms of \( x \): \[ y = 1 - x \] Now, substitute this expression for \( y \) into Equation 2: \[ -x + x = 1 \] This simplifies to: \[ x - (1 - x) = 1 \] ### Step 3: Simplify and solve for \( x \) Combining the terms gives: \[ x - 1 + x = 1 \] This simplifies to: \[ 2x - 1 = 1 \] Adding 1 to both sides: \[ 2x = 2 \] Dividing by 2: \[ x = 1 \] ### Step 4: Substitute \( x \) back to find \( y \) Now that we have \( x \), we can substitute back into Equation 1 to find \( y \): \[ 1 + y = 1 \] Subtracting 1 from both sides gives: \[ y = 0 \] ### Conclusion Thus, the solution to the equations is: \[ x = 1, \quad y = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:} , then

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]

Find X and Y,if 2[{:(1,3),(0,x):}]+[{:(y,0),(1,2):}]=[{:(5,6),(1,8):}]

Find x and y from the following equations: (i) [{:(,5,2),(,-1,y-1):}]-[{:(,1,x-1),(,2,-3):}] =[{:(,4,7),(,-3,2):}] (ii) [-8,x]+[y-2]=[-3,2]

STATEMENT-1: If three points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are collinear, then |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 STATEMENT-2: If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=0 then the points (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) will be collinear. STATEMENT-3: If lines a_(1)x+b_(1)y+c_(1)=0,a_(2)=0and a_(3)x+b_(3)y+c_(3)=0 are concurrent then |{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|=0

If |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|=|{:(a_(1),b_(1),1),(a_(2),b_(2),1),(a_(3),b_(3),1):}| , then the two triangles with vertices (x_(1),y_(1)) , (x_(2),y_(2)) , (x_(3),y_(3)) and (a_(1),b_(1)) , (a_(2),b_(2)) , (a_(3),b_(3)) must be congruent.

Find x, y if [(-2,0),(3,1)][(-1),(2x)]+[(-2),(1)]=2[(y),(3)]

If the points (x_1,y_1),(x_2,y_2)and(x_3,y_3) are collinear, then the rank of the matrix {:[(x_1,y_1,1),(x_2,y_2,1),(x_3,y_3,1)]:} will always be less than

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |