Home
Class 12
MATHS
If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),...

If `{:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}`, then

A

x=2,y=1,z=3

B

x=3,y=1,z=2

C

x=1,y=2,z=3

D

x=1,y=3,z=2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrices, we will equate the corresponding elements of the two matrices and derive equations from them. Let's go through the solution step by step. ### Step 1: Write down the equations from the matrix equality We have the matrices: \[ \begin{pmatrix} x+y & y-z \\ z-2x & y-x \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 1 & 1 \end{pmatrix} \] From this equality, we can equate the corresponding elements: 1. \( x + y = 3 \) (Equation 1) 2. \( y - z = -1 \) (Equation 2) 3. \( z - 2x = 1 \) (Equation 3) 4. \( y - x = 1 \) (Equation 4) ### Step 2: Solve for \( y \) in terms of \( x \) From Equation 4: \[ y - x = 1 \implies y = x + 1 \quad \text{(Equation 5)} \] ### Step 3: Substitute \( y \) into Equation 1 Substituting Equation 5 into Equation 1: \[ x + (x + 1) = 3 \] This simplifies to: \[ 2x + 1 = 3 \] Subtracting 1 from both sides: \[ 2x = 2 \] Dividing by 2: \[ x = 1 \quad \text{(Value of \( x \))} \] ### Step 4: Substitute \( x \) back to find \( y \) Using the value of \( x \) in Equation 5: \[ y = 1 + 1 = 2 \quad \text{(Value of \( y \))} \] ### Step 5: Substitute \( y \) into Equation 2 to find \( z \) Now, substitute \( y = 2 \) into Equation 2: \[ 2 - z = -1 \] Adding \( z \) to both sides: \[ 2 = z - 1 \] Adding 1 to both sides: \[ z = 3 \quad \text{(Value of \( z \))} \] ### Final Values Thus, we have found: - \( x = 1 \) - \( y = 2 \) - \( z = 3 \) ### Conclusion The values of \( x, y, z \) are \( x = 1, y = 2, z = 3 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - B) Objective Type Questions (One option is correct)|13 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (Section - C) Objective Type Questions (More than one options are correct)|7 Videos
  • MATRICES

    AAKASH INSTITUTE ENGLISH|Exercise Try yourself|12 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE ENGLISH|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos
  • PERMUTATIONS AND COMBINATIONS

    AAKASH INSTITUTE ENGLISH|Exercise Assignment Section-J (Aakash Challengers Questions)|7 Videos

Similar Questions

Explore conceptually related problems

Given [{:(,x,y+2),(,3,z-1):}] =[{:(,3,1),(,3,2):}] find x,y and z.

If A= {x,y,z}, B=(1,2,3} and R= {(x,2),(y,3),(z,1),(z,2), then find R^(-1) .

proof |[x,y,z],[x^(2),y^(2),z^(2)],[yz,zx,xy]| = |[1,1,1],[x^(2),y^(2),z^(2)],[x^(3),y^(3),z^(3)]|

The value of {(x-y)^3+(y-z)^3+(z-x)^3}/{9(x-y)(y-z)(z-x)} (1) 0 (2) 1/9 (3) 1/3 (4) 1

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

If [[x-y, 2x+z],[2x-y,3z+omega]] =[[-1,5],[0,13]] find x+y+z+omega

If xyz=(1-x)(1-y)(1-z) Where 0<=x,y, z<=1 , then the minimum value of x(1-z)+y (1-x)+ z(1-y) is

Image of line (x - 2)/3 = (y - 1)/1 = (z - 1)/(-4) in the plane x + y + z = 7 is

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(z-x)(x+y+z)

AAKASH INSTITUTE ENGLISH-MATRICES-Assignment (Section - A) Objective Type Questions (One option is correct)
  1. Let A be a square matrix. Then which of the following is not a symmetr...

    Text Solution

    |

  2. Each diagonal elemetn of a skew symmetric matrix is (A) zero (B) negat...

    Text Solution

    |

  3. If A={:[(1,0),(1,1)]:},"then "A^(2008) is equal to

    Text Solution

    |

  4. If A=[ x y z],B=[(a,h,g),(h,b,f),(g ,f,c)],C=[alpha beta gamma]^T th...

    Text Solution

    |

  5. if for a matrix A, A^2+I=O, where I is the identity matrix, then A equ...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. If {:A+B=[(1,0),(1,1)]andA-2B=[(-1,1),(0,-1)]:}," then "A=

    Text Solution

    |

  8. {:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

    Text Solution

    |

  9. If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:}, then f(A) is equal to

    Text Solution

    |

  10. Multiplicative inverse of the matrix [[2,1],[7,4]] is (i) [[4,-1],[-7...

    Text Solution

    |

  11. If the matrix A is such that ({:(1,3),(0,1):})A=({:(1,1),(0,-1):}), t...

    Text Solution

    |

  12. If A is a square matrix such that A^2=I , then A^(-1) is equal to A...

    Text Solution

    |

  13. If X+{:[(2,1),(6,1)]:}={:[(1,1),(0,1)]:} then 'X' is equal to

    Text Solution

    |

  14. If A={:[(1,2,3),(-2,5,7)]:}and2A-3B={:[(4,5,-9),(1,2,3)]:} then B is e...

    Text Solution

    |

  15. If {:[(x,1),(-1,-y)]:}+{:[(y,1),(3,x)]:}={:[(1,2),(2,1)]:}, then

    Text Solution

    |

  16. Let A={:[(2,3,5),(1,0,2),(3,4,5)]:}andA+B-4I=0, then B is equal to

    Text Solution

    |

  17. If A={:[(1,2),(-1,8),(4,9)]:}andX+A=0, then X is equal to

    Text Solution

    |

  18. Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sint...

    Text Solution

    |

  19. If {:[(x+y,y-z),(z-2x,y-x)]:}={:[(3,-1),(1,1)]:}, then

    Text Solution

    |

  20. If A=[1-3 2 2 0 2] and, B=[2-1-1 1 0-1] , find the matrix C such that ...

    Text Solution

    |